Abstract:
Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body.
Abstract:
Memories and their formation are disclosed. One such memory has a first array of first memory cells extending in a first direction from a first surface of a semiconductor. A second array of second memory cells extends in a second direction, opposite to the first direction, from a second surface of the semiconductor. Both arrays may be non-volatile memory arrays. For example, one of the memory arrays may be a NAND flash memory array, while the other may be a one-time-programmable memory array.
Abstract:
Memory devices are shown that include a body region and a connecting region that is formed from a semiconductor with a lower band gap than the body region. Connecting region configurations can provide increased gate induced drain leakage during an erase operation. Configurations shown can provide a reliable bias to a body region for memory operations such as erasing, and containment of charge in the body region during a boost operation.
Abstract:
Semiconductor devices are disclosed. A semiconductor device may include a hybrid transistor configured in a vertical orientation. The hybrid transistor may include a gate electrode, a drain material, a source material, and a channel material operatively coupled between the drain material and the source material. The source material and the drain material include a first material and the channel material includes a second, different material.
Abstract:
An apparatus includes lightly doped drain regions vertically extending into a semiconductor substrate. A channel region is horizontally interposed between the lightly doped drain regions, and source/drain regions vertically extend into the lightly doped drain regions. Breakdown-enhancement implant intrusion regions are within the lightly doped drain regions and are horizontally interposed between the channel region and the source/drain regions. The breakdown enhancement implant regions have a different chemical species than the lightly doped drain regions and have upper boundaries vertically underlying upper boundaries of the lightly doped drain regions. The apparatus also has a gate structure vertically overlying the channel regions and it is horizontally interposed between the breakdown-enhancement implant regions. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
Abstract:
A device comprises a vertical transistor and a shielding material comprising a conductive material having a P+ type conductivity. The vertical transistor includes an electrode, a dielectric material adjacent to the electrode, and a channel region adjacent to the dielectric material. The channel region comprises a composite structure including at least two semiconductor materials. Also disclosed is a device comprising a first electrically conductive line, vertical transistors overlying the first conductive line, a second electrically conductive line overlying the vertical transistors, and a shielding material positioned between the two adjacent vertical transistors. Each of the vertical transistors comprises a gate electrode, a gate dielectric material on opposite sides of the gate electrode, and a channel region comprising a composite structure including at least two oxide semiconductor materials. The gate dielectric material positions between the gate electrode and the channel region. The shielding material comprises an electrically conductive material.
Abstract:
A semiconductor device including a first semiconductor device that includes a substrate, a memory array disposed above the substrate and below a frontside surface of the first semiconductor device, a plurality of source region contact (SRC) nodes disposed under the memory array, and a plurality of high-voltage (HV) diodes disposed in the substrate, each of the plurality of HV diodes being connected to corresponding one of the plurality of SRC nodes; and a second semiconductor device including a plurality of complementary-metal-oxide semiconductor (CMOS) devices, each of the plurality of CMOS devices being connected to, through a backside surface of the second semiconductor device and the frontside surface of the first semiconductor device, corresponding bond pad of the memory array, wherein fusion bonding exists between the backside surface of the second semiconductor device and the frontside surface of the first semiconductor device.
Abstract:
A method used in forming a memory array, comprises forming a substrate comprising a conductive tier, an insulator etch-stop tier above the conductive tier, a select gate tier above the insulator etch-stop tier, and a stack comprising vertically-alternating insulative tiers and wordline tiers above the select gate tier. Etching is conducted through the insulative tiers, the wordline tiers, and the select gate tier to and stopping on the insulator etch-stop tier to form channel openings that have individual bottoms comprising the insulator etch-stop tier. The insulator etch-stop tier is penetrated through to extend individual of the channel openings there-through to the conductive tier. Channel material is formed in the individual channel openings elevationally along the insulative tiers, the wordline tiers, and the select gate tier and is directly electrically coupled with the conductive material in the conductive tier. Structure independent of method is disclosed.
Abstract:
Systems, methods and apparatus are provided for a hybrid gate dielectric access device for vertical three-dimensional (3D) memory. The memory cell has a first horizontally oriented access device having a first source/drain region and a second source/drain region separated by a first channel region. The first access device is operatively controlled by a first gate. A hybrid gate dielectric separates the gate from the channel region and a horizontally oriented storage node coupled to the second source/drain region of the access device.
Abstract:
Some embodiments include an integrated assembly having a carrier-sink-structure, and having digit lines over the carrier-sink-structure. Transistor body regions are over the digit lines. Extensions extend from the carrier-sink-structure to the transistor body regions. The extensions are configured to drain excess carriers from the transistor body regions. Lower source/drain regions are between the transistor body regions and the digit lines, and are coupled with the digit lines. Upper source/drain regions are over the transistor body regions, and are coupled with storage elements. Gates are adjacent the transistor body regions. The transistor body regions, lower source/drain regions and upper source/drain regions are together comprised a plurality of transistors. The transistors and the storage elements are together comprised by a plurality of memory cells of a memory array. Some embodiments include methods of forming integrated assemblies.