Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
Semiconductor die assemblies having high efficiency thermal paths. In one embodiment, a semiconductor die assembly comprises a package support substrate, a first semiconductor die electrically mounted to the package support substrate, and a plurality of second semiconductor dies. The first die has a stacking site and a peripheral region extending laterally from the stacking site, and the bottom second semiconductor die is attached to the stacking site of the first die. The assembly further includes (a) a thermal transfer structure attached to the peripheral region of the first die that has a cavity in which the second dies are positioned and an inlet, and (b) an underfill material in the cavity. The underfill material has a fillet between the second semiconductor dies caused by injecting the underfill material into the cavity through the inlet port of the casing.
Abstract:
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
Abstract:
Temporary adhesives include a thermoplastic polymer comprising from about 30% by weight to about 80% by weight of the temporary adhesive, a solvent comprising from about 20% by weight to about 70% by weight of the temporary adhesive, and a filler material comprising from about 0.2% to about 5% by weight of the temporary adhesive. Methods of processing a semiconductor device wafer include bonding the semiconductor device wafer to a surface of a carrier substrate using a temporary adhesive including a filler material comprising from about 0.2% to about 5% by weight of the temporary adhesive, thinning the semiconductor device wafer, and, while the temporary adhesive remains on the surface of the carrier substrate proximate a peripheral edge thereof, subjecting the thinned semiconductor device wafer to one or more back side processing operations. Methods of forming a thinned semiconductor wafer include using such a temporary adhesive.
Abstract:
Temporary adhesives include a thermoplastic polymer comprising from about 30% by weight to about 80% by weight of the temporary adhesive, a solvent comprising from about 20% by weight to about 70% by weight of the temporary adhesive, and a filler material comprising from about 0.2% to about 5% by weight of the temporary adhesive. Methods of processing a semiconductor device wafer include bonding the semiconductor device wafer to a surface of a carrier substrate using a temporary adhesive including a filler material comprising from about 0.2% to about 5% by weight of the temporary adhesive, thinning the semiconductor device wafer, and, while the temporary adhesive remains on the surface of the carrier substrate proximate a peripheral edge thereof, subjecting the thinned semiconductor device wafer to one or more back side processing operations. Methods of forming a thinned semiconductor wafer include using such a temporary adhesive.
Abstract:
A size comparison system may generate a size comparison by determining a size of an item based on extracted size data corresponding to the item. A comparison item is selected and the size comparison is generated between the item and the comparison item based on the size of the item. A visual rendering of the item and the comparison item is generated based on the size comparison and is displayed to a user.
Abstract:
A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Strings of memory cells comprise channel-material strings that extend through the insulative tiers and the conductive tiers in the memory blocks. A through-array-via (TAV) region comprises TAV constructions that extend through the insulative tiers and the conductive tiers. The TAV constructions individually comprise a radially-outer insulative lining and a conductive core radially-inward of the insulative lining. The insulative lining comprises a radially-inner insulative material and a radially-outer insulative material that are of different compositions relative one another. The radially-outer insulative material is in radially-outer recesses that are in the first tiers as compared to the second tiers. The radially-inner insulative material extends elevationally along the insulative tiers and the conductive tiers. Other embodiments, including method, are disclosed.
Abstract:
Systems for weather sensing and forecasting, and associated devices and methods, are disclosed herein. In some embodiments, a system for predicting a subject's perception of weather conditions is provided. The system can generate an individual profile for the subject, the individual profile including health information of the subject. The system can receive weather data including a first weather condition for a target location. The system can compare the individual profile to a plurality of different user profiles to identify one or more similar user profiles. Each similar user profile can (1) be associated with a user having similar health information as the subject, and (2) include weather perception data indicating how the user perceived a set of second weather conditions. Based on the weather data and the similar user profile(s), the system can generate a prediction of the how the subject will perceive the first weather condition.
Abstract:
A microelectronic device comprises a stack structure, a contact structure, a liner material, and a boron-containing material. The stack structure comprises alternating conductive structures and dielectric structures. The contact structure extends through the stack structure. The liner material is between the stack structure and the contact structure. The boron-containing material is between the liner material and the stack structure. Related electronic systems and methods are also described.
Abstract:
Semiconductor device assemblies having stacked semiconductor dies and thermal transfer devices that include vapor chambers are disclosed herein. In one embodiment, a semiconductor device assembly includes a first semiconductor die having a base region, at least one second semiconductor die at the base region, and a thermal transfer device attached to the first and second dies. The thermal transfer device includes an encapsulant at least partially surrounding the second die and a via formed in the encapsulant. The encapsulant at least partially defines a cooling channel that is adjacent to a peripheral region of the first die. The via includes a working fluid and/or a solid thermal conductor that at least partially fills the channel.