Abstract:
A non-volatile memory cell, and method of making, that includes a semiconductor substrate having a fin shaped upper surface with a top surface and two side surfaces. Source and drain regions are formed in the fin shaped upper surface portion with a channel region there between. A conductive floating gate includes a first portion extending along a first portion of the top surface, and second and third portions extending along first portions of the two side surfaces, respectively. A conductive control gate includes a first portion extending along a second portion of the top surface, second and third portions extending along second portions of the two side surfaces respectively, a fourth portion extending up and over at least some of the floating gate first portion, and fifth and sixth portions extending out and over at least some of the floating gate second and third portions respectively.
Abstract:
The invention relates to a system and method for improved power sequencing within an embedded flash memory device for a plurality of voltage sources. In one embodiment, a power sequence enabling circuit comprises a PMOS transistor, a first NMOS transistor, a second NMOS transistor, and a first voltage source. During a power up time period, a voltage output from the first voltage source ramps upward, toward a voltage output from a second voltage source through the PMOS transistor. During a power down period, a voltage from the second voltage source ramps downward toward an intermediate voltage greater than zero volts through the first NMOS transistor.
Abstract:
A system and method to inhibit the erasing of a portion of a sector of split gate flash memory cells while allowing the remainder of the sector to be erased is disclosed. The inhibiting is controlled by control logic that applies one or more bias voltages to the portion of the sector whose erasure is to be inhibited.
Abstract:
A memory device, and method of operation, includes an array of non-volatile memory cells and a controller. The controller is configured to perform an operation (e.g. erase, program, etc.) on a first plurality of the non-volatile memory cells using operational voltages with a first energy margin, and perform the same operation on a second plurality of the non-volatile memory cells using operational voltages with a second energy margin that is greater than the first energy margin. The operations of varying energy margins are based on the required storage longevity of the data being stored (lower energy margins for data being stored for shorter periods of time) to save energy and wear.
Abstract:
A method of forming split gate non-volatile memory cells on the same chip as logic and high voltage devices having HKMG logic gates. The method includes forming the source and drain regions, floating gates, control gates, and the poly layer for the erase gates and word line gates in the memory area of the chip. A protective insulation layer is formed over the memory area, and an HKMG layer and poly layer are formed on the chip, removed from the memory area, and patterned in the logic areas of the chip to form the logic gates having varying amounts of underlying insulation.
Abstract:
A memory device having a pair of conductive floating gates with inner sidewalls facing each other, and disposed over and insulated from a substrate of first conductivity type. A pair of spaced apart conductive control gates each disposed over and insulated from one of the floating gates, and each including inner sidewalls facing each other. A pair of first spacers of insulation material extending along control gate inner sidewalls and over the floating gates. The floating gate inner sidewalls are aligned with side surfaces of the first spacers. A pair of second spacers of insulation material each extend along one of the first spacers and along one of the floating gate inner sidewalls. A trench formed into the substrate having sidewalls aligned with side surfaces of the second spacers. Silicon carbon disposed in the trench. Material implanted into the silicon carbon forming a first region having a second conductivity type.
Abstract:
A memory cell formed by forming a trench in the surface of a substrate. First and second spaced apart regions are formed in the substrate with a channel region therebetween. The first region is formed under the trench. The channel region includes a first portion that extends along a sidewall of the trench and a second portion that extends along the surface of the substrate. A charge trapping layer in the trench is adjacent to and insulated from the first portion of the channel region for controlling the conduction of the channel region first portion. An electrically conductive gate in the trench is adjacent to and insulated from the charge trapping layer and from the first region and is capacitively coupled to the charge trapping layer. An electrically conductive control gate is disposed over and insulated from the second portion of the channel region for controlling its conduction.
Abstract:
An improved control gate decoding design may reduce disturbances during the programming of flash memory cells. In one embodiment, a control gate line decoder is coupled to a first control gate line associated with a row of flash memory cells in a first sector and to a second control gate line associated with a row of flash memory cells in a second sector.