Abstract:
Electrical contacts may be formed by forming dielectric liners along sidewalls of a dielectric structure, forming sacrificial liners over and transverse to the dielectric liners along sidewalls of a sacrificial structure, selectively removing portions of the dielectric liners at intersections of the dielectric liners and sacrificial liners to form pores, and at least partially filling the pores with a conductive material. Nano-scale pores may be formed by similar methods. Bottom electrodes may be formed and electrical contacts may be structurally and electrically coupled to the bottom electrodes to form memory devices. Nano-scale electrical contacts may have a rectangular cross-section of a first width and a second width, each width less than about 20 nm. Memory devices may include bottom electrodes, electrical contacts having a cross-sectional area less than about 150 nm2 over and electrically coupled to the bottom electrodes, and a cell material over the electrical contacts.
Abstract:
Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region are majority doped with a same dopant type. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending across a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends outwardly from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
Abstract:
The use of strained gate electrodes in integrated circuits results in a transistor having improved carrier mobility, improved drive characteristics, and reduced source drain junction leakage. The gate electrode strain can be obtained through non symmetric placement of stress inducing structures as part of the gate electrode.
Abstract:
Semiconductor substrates with unitary vias and via terminals, and associated systems and methods are disclosed. A representative method in accordance with a particular embodiment includes forming a blind via in a semiconductor substrate, applying a protective layer to a sidewall surface of the via, and forming a terminal opening by selectively removing substrate material from an end surface of the via, while protecting from removal substrate material against which the protective coating is applied. The method can further include disposing a conductive material in both the via and the terminal opening to form an electrically conductive terminal that is unitary with conductive material in the via. Substrate material adjacent to the terminal can then be removed to expose the terminal, which can then be connected to a conductive structure external to the substrate.
Abstract:
Methods of pitch doubling of asymmetric features and semiconductor structures including the same are disclosed. In one embodiment, a single photolithography mask may be used to pitch double three features, for example, of a DRAM array. In one embodiment, two wordlines and a grounded gate over field may be pitch doubled. Semiconductor structures including such features are also disclosed.
Abstract:
A semiconductor device assembly is provided. The assembly includes a first semiconductor device including a plurality of electrical contacts on an upper surface thereof; a monolithic silicon structure having a lower surface in contact with the upper surface of the first semiconductor device, the monolithic silicon structure including a cavity extending from the lower surface completely through a body of the monolithic silicon structure to a top surface of the monolithic silicon structure; and a second semiconductor device disposed in the cavity, the second semiconductor device including a plurality of interconnects, each operatively coupled to a corresponding one of the plurality of electrical contacts.
Abstract:
A method of forming a microelectronic device comprises forming line structures comprising conductive material and insulative material overlying the conductive material, the line structures separated from one another by trenches. An isolation material is formed on surfaces of the line structures inside and outside of the trenches, the isolation material only partially filling the trenches to form air gaps interposed between the line structures. Openings are formed to extend through the isolation material and expose portions of the insulative material of the line structures. The exposed portions of the insulative material of the line structures are removed to form extended openings extending to the conductive material of the line structures. Conductive contact structures are formed within the extended openings. Conductive pad structures are formed on the conductive contact structures. Additional methods, microelectronic devices, memory devices, and electronic systems are also described.
Abstract:
A semiconductor device assembly is disclosed. The semiconductor device assembly includes a first semiconductor die and second semiconductor dies and an additional semiconductor component coupled with the logic die. Dielectric peripheral material is disposed along sidewalls of the first die and extends beyond a first footprint of the first die. A gap fill material is disposed at the first die and at the dielectric peripheral material beyond a second footprint of the second semiconductor dies and a third footprint of the additional semiconductor component such that the gap fill material at least partially surrounds the second semiconductor dies and the additional semiconductor component.