Abstract:
A memory device, comprising: a phase change material; and an electrode configured to heat the phase change material to change a state of the phase change material, the electrode comprising a material having a positive temperature coefficient of resistance, wherein the electrode has a narrow wall-type shape comprising a broad vertical face and a narrow vertical edge that is narrower than the broad vertical face.
Abstract:
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
Abstract:
Semiconductor devices may include a first semiconductor die comprising a heat-generating region located at a periphery thereof. A second semiconductor die is attached to the first semiconductor die. At least a portion of the heat-generating region is located laterally outside a footprint of the second semiconductor die. A thermally insulating material is located on a side surface of the second semiconductor die. Methods of forming semiconductor devices may involve attaching a second semiconductor die to a first semiconductor die. The first semiconductor die includes a heat-generating region at a periphery thereof. At least a portion of the heat-generating region is located laterally outside a footprint of the second semiconductor die. A thermally insulating material is located on a side surface of the second semiconductor die.
Abstract:
Memory devices are shown that include a body region and a connecting region that is formed from a semiconductor with a lower band gap than the body region. Connecting region configurations can provide increased gate induced drain leakage during an erase operation. Configurations shown can provide a reliable bias to a body region for memory operations such as erasing, and containment of charge in the body region during a boost operation.
Abstract:
Stacked semiconductor die assemblies having memory dies stacked between partitioned logic dies and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a first logic die, a second logic die, and a thermally conductive casing defining an enclosure. The stack of memory dies can be disposed within the enclosure and between the first and second logic dies.
Abstract:
Some embodiments include an integrated assembly having a semiconductor die with memory array regions and one or more regions peripheral to the memory array regions. A stack of alternating insulative and conductive levels extends across the memory array regions and passes into at least one of the peripheral regions. The stack generates bending stresses on the die. At least one stress-moderating region extends through the stack and is configured to alleviate the bending stresses.
Abstract:
A device comprises an array of elevationally-extending transistors and a circuit structure adjacent and electrically coupled to the elevationally-extending transistors of the array. The circuit structure comprises a stair step structure comprising vertically-alternating tiers comprising conductive steps that are at least partially elevationally separated from one another by insulative material. Operative conductive vias individually extend elevationally through one of the conductive steps at least to a bottom of the vertically-alternating tiers and individually electrically couple to an electronic component below the vertically-alternating tiers. Dummy structures individually extend elevationally through one of the conductive steps at least to the bottom of the vertically-alternating tiers. Methods are also disclosed.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
A method used in forming a memory array comprising strings of memory cells and operative through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and conductive tiers. The stack comprises a TAV region and an operative memory-cell-string region. The TAV region comprises spaced operative TAV areas. Operative channel-material strings are formed in the stack in the operative memory-cell-string region and dummy channel-material strings are formed in the stack in the TAV region laterally outside of and not within the operative TAV areas. Operative TAVs are formed in individual of the spaced operative TAV areas in the TAV region. Other methods and structure independent of method are disclosed.