Abstract:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
Abstract:
A circuit for performing clock recovery according to a received digital signal. The circuit includes at least an edge sampler and a data sampler for sampling the digital signal, and a clock signal supply circuit. The clock signal supply circuit provides edge clock and data clock signals offset in phase from one another to the respective clock inputs of the edge sampler and the data sampler. A digital phase detector determines if the data clock is early, late or synchronized with respect to data value transitions in the digital signal, and based on that determination provides a phase adjustment signal to the clock signal supply circuit, which is operable to vary phases of the data and edge clock signals accordingly.
Abstract:
A signaling system includes a pre-emphasizing transmitter and an equalizing receiver coupled to one another via a high-speed signal path. The receiver measures the quality of data conveyed from the transmitter. A controller uses this information and other information to adaptively establish appropriate transmit pre-emphasis and receive equalization settings, e.g. to select the lowest power setting for which the signaling system provides some minimum communication bandwidth without exceeding a desired bit-error rate.
Abstract:
In a clock generating circuit having a plurality of injection-locking oscillators, a first one of the injection-locking oscillators is enabled to output a free-running reference clock signal and a control value is generated based at least in part on a frequency relationship between the free-running reference clock signal and an input timing signal. In accordance with the control value, a selected one of the injection-locking oscillators is enabled to generate an output clock signal that is frequency-locked with respect to the input timing signal.
Abstract:
A method of operating a memory controller is disclosed. The method includes transmitting data signals to a memory device over each one of at least two parallel data links. A timing signal is sent to the memory device on a first dedicated link. The timing signal has a fixed phase relationship with the data signals. A data strobe signal is driven to the memory device on a second dedicated link. Phase information is received from the memory device. The phase information being generated internal to the memory device and based on a comparison between the timing signal and a version of the data strobe signal internally distributed within the memory device. A phase of the data strobe signal is adjusted relative to the timing signal based on the received phase information.
Abstract:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
Abstract:
A method of operating a memory controller is disclosed. The method includes transmitting data signals to a memory device over each one of at least two parallel data links. A timing signal is sent to the memory device on a first dedicated link. The timing signal has a fixed phase relationship with the data signals. A data strobe signal is driven to the memory device on a second dedicated link. Phase information is received from the memory device. The phase information being generated internal to the memory device and based on a comparison between the timing signal and a version of the data strobe signal internally distributed within the memory device. A phase of the data strobe signal is adjusted relative to the timing signal based on the received phase information.
Abstract:
Upon detecting transition of an input timing signal from a non-oscillating state to an oscillating state, a clock generating circuit is switched from a paused mode to an open-loop operating mode to transition an output timing signal of the clock generating circuit from a non-oscillating state to an oscillating state in which the output timing signal oscillates at a free-running frequency. A ratio of a reference frequency of the oscillating-state input timing signal and the free-running frequency of the output timing signal is determined and used to adjust a frequency-lock range of the clock generating circuit. The clock generating circuit is then switched from the open-loop operating state to the closed-loop operating state to frequency-lock the output timing signal with respect to the reference frequency of the input timing signal.
Abstract:
This disclosure provides a split-path equalizer and a clock recovery circuit. More particularly, clock recovery operation is enhanced, particularly at high-signaling rates, by separately equalizing each of a data path and an edge path. In specific embodiments, the data path is equalized in a manner that maximizes signal-to-noise ratio and the edge path is equalized in a manner that emphasizes symmetric edge response for a single unit interval and zero edge response for other unit intervals (e.g., irrespective of peak voltage margin). Such equalization tightens edge grouping and thus enhances clock recovery, while at the same time optimizing data-path sampling. Techniques are also disclosed for addressing split-path equalization-induced skew.
Abstract:
Embodiments of an integrated circuit (IC) comprising frequency change detection circuitry are described. Some embodiments include first circuitry to generate a second clock signal based on a first clock signal, wherein the first clock signal has a first clock frequency, and wherein the second clock signal has a second clock frequency that is an integral multiple of the first clock frequency. The embodiments further include second circuitry to obtain samples by oversampling the first clock signal using the second clock signal. Additionally, the embodiments include third circuitry to detect a change in the first clock frequency based on the samples.