Abstract:
To provide a semiconductor device that inhibits unexpected output of a high-level signal immediately after the rise of a power supply voltage. The semiconductor device includes a first buffer circuit, a level shifter circuit, and a second buffer circuit. A first potential is supplied to the first buffer circuit, and a second potential is supplied to the level shifter circuit and the second buffer circuit; consequently, the semiconductor device returns to a normal state. When the semiconductor device returns to a normal state, the second potential is supplied, so that the potential of a node in the level shifter circuit increases. To utilize the increase in the second potential or suppress malfunction due to the increase in the potential, capacitors are provided in the level shifter circuit. This inhibits unexpected operation of a transistor in the level shifter circuit.
Abstract:
[Problem] To provide a semiconductor device suitable for miniaturization. To provide a highly reliable semiconductor device. To provide a semiconductor device with improved operating speed.[Solving Means] A semiconductor device including a memory cell including first to cth (c is a natural number of 2 or more) sub memory cells, wherein: the jth sub memory cell includes a first transistor, a second transistor, and a capacitor; a first semiconductor layer included in the first transistor and a second semiconductor layer included in the second transistor include an oxide semiconductor; one of terminals of the capacitor is electrically connected to a gate electrode included in the second transistor; the gate electrode included in the second transistor is electrically connected to one of a source electrode and a drain electrode which are included in the first transistor; and when j≧2, the jth sub memory cell is arranged over the j−1th sub memory cell.
Abstract:
To provide a semiconductor device with excellent electrical characteristics or a semiconductor device with stable electrical characteristics. A semiconductor device includes a first transistor, a second transistor, a first insulator, a second insulator, a first wiring, and a first plug. The first transistor includes silicon. The second transistor includes an oxide semiconductor. The first insulator is located over the first transistor. The second insulator is located over the first insulator. The second transistor is located over the second insulator. The first wiring is located over the second insulator and the first plug. The first transistor and the second transistor are electrically connected to each other through the first wiring and the first plug. The first wiring has low hydrogen permeability. The hydrogen permeability of the second insulator is lower than the hydrogen permeability of the first insulator.
Abstract:
Provided is a semiconductor device which can achieve a reduction in its area, reduction in power consumption, and operation at a high speed. A semiconductor device 10 has a structure in which a circuit 31 including a memory circuit and a circuit 32 including an amplifier circuit are stacked. With this structure, the memory circuit and the amplifier circuit can be mounted on the semiconductor device 10 while the increase in the area of the semiconductor device 10 is suppressed. Thus, the area of the semiconductor device 10 can be reduced. Further, the circuits are formed using OS transistors, so that the memory circuit and the amplifier circuit which have low off-state current and which can operate at a high speed can be formed. Therefore, a reduction in power consumption and improvement in operation speed of the semiconductor device 10 can be achieved.
Abstract:
A semiconductor device which occupies a small area is provided. A semiconductor device includes a resistor. The resistor includes a transistor. The increase rate of a drain current of the transistor with a 0.1 V change in drain voltage is preferably higher than or equal to 1% when the drain voltage is higher than a difference between a gate voltage and a threshold voltage of the transistor. The semiconductor device has a function of generating a voltage based on the resistance of the resistor.
Abstract:
To read multilevel data from a memory cell having a transistor using silicon and a transistor using an oxide semiconductor, without switching a signal for reading the multilevel data in accordance with the number of the levels of the multilevel data. The potential of the bit line is precharged, the electrical charge of the bit line is discharged via a transistor for writing data, and the potential of the bit line which is changed by the discharging is read as multilevel data. With such a structure, the potential corresponding to data held in a gate of the transistor can be read by only one-time switching of a signal for reading data.
Abstract:
A transistor having favorable electrical characteristics. A transistor suitable for miniaturization. A transistor having a high switching speed. One embodiment of the present invention is a semiconductor device that includes a transistor. The transistor includes an oxide semiconductor, a gate electrode, and a gate insulator. The oxide semiconductor includes a first region in which the oxide semiconductor and the gate electrode overlap with each other with the gate insulator positioned therebetween. The transistor has a threshold voltage higher than 0 V and a switching speed lower than 100 nanoseconds.
Abstract:
One object of the present invention is to provide a regulator circuit with an improved noise margin. In a regulator circuit including a bias circuit generating a reference voltage on the basis of the potential difference between a first power supply terminal and a second power supply terminal, and a voltage regulator outputting a potential to an output terminal on the basis of a reference potential input from the bias circuit, a bypass capacitor is provided between a power supply terminal and a node to which a gate of a transistor included in the bias circuit is connected.
Abstract:
The semiconductor device includes a source line, a bit line, a signal line, a word line, memory cells connected in parallel between the source line and the bit line, a first driver circuit electrically connected to the source line and the bit line through switching elements, a second driver circuit electrically connected to the source line through a switching element, a third driver circuit electrically connected to the signal line, and a fourth driver circuit electrically connected to the word line. The memory cell includes a first transistor including a first gate electrode, a first source electrode, and a first drain electrode, a second transistor including a second gate electrode, a second source electrode, and a second drain electrode, and a capacitor. The second transistor includes an oxide semiconductor material.
Abstract:
A semiconductor device including a nonvolatile memory cell in which a writing transistor which includes an oxide semiconductor, a reading transistor which includes a semiconductor material different from that of the writing transistor, and a capacitor are included is provided. Data is written to the memory cell by turning on the writing transistor and applying a potential to a node where a source electrode (or a drain electrode) of the writing transistor, one electrode of the capacitor, and a gate electrode of the reading transistor are electrically connected, and then turning off the writing transistor, so that the predetermined amount of charge is held in the node. Further, when a p-channel transistor is used as the reading transistor, a reading potential is a positive potential.