Abstract:
Apparatus and methods for rack level pre-installed interconnect for enabling cableless server, storage, and networking deployment. Plastic cable waveguides are configured to couple millimeter-wave radio frequency (RF) signals between two or more Extremely High Frequency (EHF) transceiver chips, thus supporting millimeter-wave wireless communication links enabling components in the separate chassis to communicate without requiring wire or optical cables between the chassis. Various configurations are disclosed, including multiple configurations for server chassis, storage chassis and arrays, and network/switch chassis. A plurality of plastic cable waveguide may be coupled to applicable support/mounting members, which in turn are mounted to a rack and/or top-of-rack switches. This enables the plastic cable waveguides to be pre-installed at the rack level, and further enables racks to be installed and replaced without requiring further cabling for the supported communication links. The communication links support link bandwidths of up to 6 gigabits per second, and may be aggregated to facilitate multi-lane links.
Abstract:
A remotely managed expandable multi-user computer system is provided. The computer system includes a removable compute cartridge and a removable storage cartridge allowing easy upgrade of the computer system. The computer system self-configures when powered on to allow remote management by another system over a network. Automatic failover support is provided without the need for a separate compute element. A self-configurable removable secure-to-wireless converter to couple to a client computer system allows secure communications between the multi-user system and the client computer system via a wireless network.
Abstract:
Mobile computing device technology and systems and methods using the same are described herein. In particular, mobile computing devices that may serve as a processing component of a disaggregated computing system described, non-integral screens that may be paired with the mobile computing devices, and systems and methods using such devices and screens are described. In some embodiments, the mobile computing device technology includes a mobile computing device that lacks an integral screen, but which is capable of throwing at least video information to a non-integral target screen, e.g., via a paired connection established over a wired or wireless communication interface.
Abstract:
Apparatus and methods for rack level pre-installed interconnect for enabling cableless server, storage, and networking deployment. Plastic cable waveguides are configured to couple millimeter-wave radio frequency (RF) signals between two or more Extremely High Frequency (EHF) transceiver chips, thus supporting millimeter-wave wireless communication links enabling components in the separate chassis to communicate without requiring wire or optical cables between the chassis. Various configurations are disclosed, including multiple configurations for server chassis, storage chassis and arrays, and network/switch chassis. A plurality of plastic cable waveguide may be coupled to applicable support/mounting members, which in turn are mounted to a rack and/or top-of-rack switches. This enables the plastic cable waveguides to be pre-installed at the rack level, and further enables racks to be installed and replaced without requiring further cabling for the supported communication links. The communication links support link bandwidths of up to 6 gigabits per second, and may be aggregated to facilitate multi-lane links.
Abstract:
Mobile computing device technology and systems and methods using the same are described herein. In particular, mobile computing devices that may serve as a processing component of a disaggregated computing system described, non-integral screens that may be paired with the mobile computing devices, and systems and methods using such devices and screens are described. In some embodiments, the mobile computing device technology includes a mobile computing device that lacks an integral screen, but which is capable of throwing at least video information to a non-integral target screen, e.g., via a paired connection established over a wired or wireless communication interface.
Abstract:
A remotely managed expandable multi-user computer system is provided. The computer system includes a removable compute cartridge and a removable storage cartridge allowing easy upgrade of the computer system. The computer system self-configures when powered on to allow remote management by another system over a network. Automatic failover support is provided without the need for a separate compute element. A self-configurable removable secure-to-wireless converter to couple to a client computer system allows secure communications between the multi-user system and the client computer system via a wireless network.
Abstract:
A rack for supporting sleds includes a pair of elongated support posts and pairs of elongated support arms that extend from the elongated support posts. Each pair of the elongated support arms defines a sled slot to receive a corresponding sled. A power supply is attached to an elongated support arm of each pair of elongated support arms to provide power to a corresponding sled. The power supply may include a chassis-less circuit board substrate that is removable from a power supply housing coupled to the corresponding elongated support arm.
Abstract:
Techniques for automated data center maintenance are described. In an example embodiment, an automated maintenance device may comprise processing circuitry and non-transitory computer-readable storage media comprising instructions for execution by the processing circuitry to cause the automated maintenance device to receive an automation command from an automation coordinator for a data center, identify an automated maintenance procedure based on the received automation command, and perform the identified automated maintenance procedure. Other embodiments are described and claimed.
Abstract:
Apparatus and methods for cableless connection of components within chassis and between separate chassis. Pairs of Extremely High Frequency (EHF) transceiver chips supporting very short length millimeter-wave wireless communication links are configured to pass radio frequency signals through holes in one or more metal layers in separate chassis and/or frames, enabling components in the separate chassis to communicate without requiring cables between the chassis. Various configurations are disclosed, including multiple configurations for server chassis, storage chassis and arrays, and network/switch chassis. The EHF-based wireless links support link bandwidths of up to 6 gigabits per second, and may be aggregated to facilitate multi-lane links.
Abstract:
A switch for transmitting data from a first device to a second device includes a port in communication with the second device, queues which store slices of data received from the first device, and circuitry for selectively outputting a slice of the data from at least one of the queues to the port for transmission to the second device.