摘要:
A semiconductor light emitting device includes a substrate; a plurality of light emitting cells disposed on the top surface of the substrate, the light emitting cells each having an active layer; a plurality of connection parts formed on the substrate with the light emitting cells formed thereon to connect the light emitting cells in a parallel or series-parallel configuration; and an insulation layer formed on the surface of the light emitting cell to prevent an undesired connection between the connection parts and the light emitting cell. The light emitting cells comprise at least one defective light emitting cell, and at least one of the connection parts related to the defective light emitting cell is disconnected.
摘要:
A semiconductor light emitting device includes: first and second conductive type semiconductor layers; an active layer disposed between the first and second conductive type semiconductor layers; and first and second electrodes disposed on one surface of each of the first and second conductive type semiconductor layers, respectively, wherein at least one of the first and second electrodes includes a pad part and a finger part formed to extend from the pad part, and the end of the finger part has an annular shape. Because a phenomenon in which current is concentrated in a partial area of the finger part is minimized, tolerance to electrostatic discharge (ESD) can be strengthened and light extraction efficiency can be improved.
摘要:
An n-type GaN layer is formed on a substrate, and an active layer is formed on the n-type GaN layer. A p-type GaN layer is formed on the active layer, and portions of the p-type GaN layer and the active layer are mesa-etched so as to expose a portion of the n-type GaN layer. An irregularities forming layer is formed on the p-type GaN layer and a photosensitive film pattern for forming a surface irregularities pattern is formed on the irregularities forming layer. The irregularities forming layer is selectively wet-etched by using the photosensitive film pattern as an etching mask, thereby forming surface irregularities. A p-electrode is formed on the p-type GaN layer having the surface irregularities formed thereon, and an n-electrode is formed on the exposed n-type GaN layer.”
摘要:
Provided a method of manufacturing a GaN-based LED comprising forming an n-type GaN layer on a substrate; forming an active layer on the n-type GaN layer; forming a p-type GaN layer on the active layer; mesa-etching portions of the p-type GaN layer and the active layer so as to expose a portion of the n-type GaN layer; forming an irregularities forming layer on the p-type GaN layer; forming a photosensitive film pattern for forming a surface irregularities pattern on the irregularities forming layer; selectively wet-etching the irregularities forming layer by using the photosensitive film pattern as an etching mask, thereby forming surface irregularities; forming a p-electrode on the p-type GaN layer having the surface irregularities formed thereon; and forming an n-electrode on the exposed n-type GaN layer.
摘要:
In a semiconductor light emitting device, a light emitting structure includes a first-conductivity type semiconductor layer, an active layer, and a second-conductivity type semiconductor layer, which are sequentially formed on a conductive substrate. A second-conductivity type electrode includes a conductive via and an electrical connection part. The conductive via passes through the first-conductivity type semiconductor layer and the active layer, and is connected to the inside of the second-conductivity type semiconductor layer. The electrical connection part extends from the conductive via and is exposed to the outside of the light emitting structure. An insulator electrically separates the second-conductivity type electrode from the conductive substrate, the first-conductivity type semiconductor layer, and the active layer. A passivation layer is formed to cover at least a side surface of the active layer in the light emitting structure. An uneven structure is formed on a path of light emitted from the active layer.
摘要:
A semiconductor light emitting device may include: a light emitting structure including an n-type semiconductor layer, a p-type semiconductor layer, and an active layer interposed therebetween; a first electrode connected to one of the n-type semiconductor layer and the p-type semiconductor layer; and a second electrode connected to the other of the n-type semiconductor layer and the p-type semiconductor layer. The first electrode may include a first electrode pad disposed in a central portion of one side of the light emitting structure and first to third branch electrodes connected to the first electrode pad, having a fork shape. The second electrode may include second and third electrode pads disposed separately in both corners of the other side opposing the one side and fourth to seventh branch electrodes connected thereto. The fourth and seventh branch electrodes may extend in an interdigitated manner between the first to third branch electrodes.
摘要:
There is provided a semiconductor light emitting device including a conductive substrate, a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked. The contact area between the first electrode layer and the first semiconductor layer is 3% to 13% of the total area of the semiconductor light emitting device, and thus high luminous efficiency is achieved.
摘要:
Provided is a vertical nitride-based LED including a first electrode; a first nitride semiconductor layer that is disposed on the first electrode; an active layer that is disposed on the first nitride semiconductor layer; a second nitride semiconductor layer that is disposed on the active layer; an ohmic contact pattern that is disposed on the second nitride semiconductor layer; a second electrode that is disposed on the ohmic contact pattern; and a bonding pad that is electrically connected to the second electrode and disposed on the second nitride semiconductor layer.
摘要:
A semiconductor light emitting device includes: a light emission structure in which a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer are sequentially stacked; a first electrode formed on the first conductive semiconductor layer; an insulating layer formed on the second conductive semiconductor layer and made of a transparent material; a reflection unit formed on the insulating layer and reflecting light emitted from the active layer; a second electrode formed on the reflection unit; and a transparent electrode formed on the second conductive semiconductor layer, the transparent electrode being in contact with the insulating layer and the second electrode.
摘要:
The present invention relates to a vertical/horizontal light-emitting diode for a semiconductor. An exemplary embodiment of the present invention provides a semiconductor light-emitting diode comprising: a conductive substrate; a light-emitting structure including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer sequentially formed over the conductive substrate; a second conductive electrode including a conductive via that passes through the first conductive semiconductor and active layers to be connected with the second conductive semiconductor layer therein, and an electrical connector that extends from the conductive via and is exposed outside the light-emitting structure; a passivation layer for covering a dielectric and at least the side surface of the active layer of the light-emitting structure, the dielectric serving to electrically isolate the second conductive electrode from the conductive substrate, the first conductive semiconductor layer and the active layer; and a surface relief structure formed on the pathway of light emitted from the active layer. According to the present invention, a semiconductor light-emitting diode exhibiting enhanced external light extraction efficiency, especially the diode's side light extraction efficiency, can be obtained.