摘要:
A method for shielding one or more circuits (21, 21′) of a printed circuit board includes depositing a layer of dielectric material (43) over a printed circuit board substrate (22) and the printed circuits (21, 21′), creating a trench-like opening (44) in the dielectric layer (43) such that the trench-like opening (44) surrounds the one or more circuits (21, 21′) to be shielded, depositing a layer of metal (27) over the layer of dielectric material (43) and within the trench-like openings (44), creating a solder pad (24) at each location where an electrical connection is to be made to the printed circuits (21, 21′) by removing a border of the metal layer (27) surrounding each connection location, and providing a microvia (25) through each solder pad (24) penetrating the dielectric layer (43) and terminating at the metal of the printed circuit (21, 21′).
摘要:
Methods and apparatus for forming a metal shield on a printed circuit board (10) include a layer of dielectric material (23) one or more printed circuits (21) on the layer of dielectric material (23), a layer of metal (27) on the layer of dielectric material (23), a metal-clad trench or opening surrounding the printed circuit (44) and electrically connected to the layer of metal(27), a solder pad (24) on the layer of dielectric material (23), a microvia (25) through the solder pad (24) and the layer of dielectric material (23), and electrical components (11) soldered to the solder pads (24) and to the printed circuit (21).
摘要:
A metallized aluminum nitride substrate (40) has a first layer (42) of deposited metal, comprising chromium, chromium oxide, and an aluminum nitride/chromium oxide complex represented by the formulaAl.sub.a N.sub.b O.sub.c Cr.sub.dwhere a, b, c and d are numbers representing relative combining ratios. The first layer is formed by sputtering about 10-500 .ANG.ngstroms of chromium onto the substrate under vacuum, and then heating the substrate in an oxygen-containing atmosphere at conditions of time and temperature sufficient to convert at least portions of the deposited chromium to chromium oxide, in order to form an adherent metal system. A second layer (44) of metal such as chromium covers the first layer. A third layer (46) of metal is deposited on the second layer in a manner sufficient to prevent oxidation of the second layer.
摘要:
A multilayer substrate assembly (80) includes at least one embedded component (52) within a plurality of stacked pre-processed substrates. Each pre-processed substrate can have a core dielectric (14), patterned conductive surfaces (12 and 16) on opposing sides of the core dielectric, and at least one hole (18) in each of at least two adjacently stacked pre-processed substrates such that at least two holes are substantially aligned on top of each other forming a single hole (19). The assembly further includes a processed adhesive layer (48) between top and bottom surfaces of respective pre-processed substrates. The embedded component is placed in the single hole and forms a gap (67 & 66) between the embedded component and a peripheral wall of the single hole. When the assembly is biased, the processed adhesive layer fills the gap to form the assembly having the embedded component cross-secting the plurality of pre-processed substrates.
摘要:
Methods for forming a metal shield on a printed circuit board (10) include depositing a first layer of metal (41) on a substrate (22) of the printed circuit board (10), depositing a first layer of dielectric material (42) on the first layer of metal (41), printing one or more circuits (21, 21′) on the first dielectric layer (42), depositing a second layer of dielectric material (43) over the one or more printed circuits (21, 21′), forming a trench-like opening (44) in the two layers of dielectric material (42, 43) surrounding the one or more printed circuits (21, 21′) so that the metal of the first layer (41) is exposed by the trench-like opening (44), depositing a second layer of metal (27) on the second layer of dielectric material (43) such that the second layer of metal (27) plates the trench-like opening (44) and makes electrical contact with the first metal layer (41).
摘要:
One method for fabricating solderable pads (406) onto a substrate (220) for direct chip attachment uses a multilayer metallization coating (500). The coating has a bottom layer (202) of indium-tin oxide, with an intermediate layer (204) of copper and a top layer (206) of indium-tin oxide. A masking layer (208) is deposited on the active display area (402) of the substrate, leaving the bonding pads uncovered. The revealed bonding pads are then plasma etched, using the polyimide as an etch resist, and the top layer of ITO is selectively removed to reveal the underlying copper layer. The exposed copper layer (204) is then plated with a solderable metal to the desired thickness to form bonding pads that may be used with direct chip attachment schemes.
摘要:
A method of forming electrode patterns on a substrate. A transparent substrate (10) is patterned with a photoresist layer (14) on the front side so that portions (18) of the substrate are revealed. A metal oxide layer (12) is deposited on the patterned photoresist layer and the revealed portions of the substrate. The patterned photoresist layer is then exposed to actinic radiation (19) through the back side (25) of the transparent substrate. The photoresist pattern (20) is removed, carrying with it those portions of the metal oxide layer deposited on the photoresist layer, forming an electrode pattern (22) by a lift-off technique.
摘要:
A method of creating high density interlayer interconnects on circuit carrying substrates. A circuit pattern (20) is formed on one side of a substrate (10), and gold balls (30) are selectively placed on the circuit pattern using a thermosonic ball bonder. A liquid solution of a polymer is cast directly on the substrate and the etched circuit pattern such that only the upper portion of each gold ball is revealed when the liquid polymer solution is then dried and cured to form a dry film (40). A second layer of metal is then deposited directly on the dry film, such that it is electrically and mechanically connected to the exposed top of the gold balls. A second circuit pattern (50) is then formed in the second layer of metal. The resulting high density interconnect has two circuit layers separated by a dielectric layer. Each circuit layer is connected to the other by the gold balls that serve as conductive vias.
摘要:
A method of manufacturing high aspect ratio plated through holes in a circuit carrying substrate. High aspect ratio apertures or holes (16) are formed in a substrate (10). A thin film of copper (20) is sputtered onto the substrate and in the apertures that a macroscopically discontinuous copper film (26) is formed on part of the aperture walls. The macroscopically discontinuous copper film is substantially thinner than the copper film that is deposited on the surface. A catalytic copper coating (30) is plated directly on the vacuum deposited thin film of copper by electroless copper plating in a manner sufficient to form a macroscopically continuous copper layer on the aperture walls.
摘要:
A method for fabricating solderable pads (106) onto a glass substrate (101) includes the step of depositing a seed metallization layer (step 406) after the polyimide layer is cured (step 404) but prior to buffing the alignment layer (step 414). The seed metallization layer can done by, for example, sputter depositing indium-tin, tin or copper.