摘要:
A method of integrating a post-etching cleaning process with deposition for a semiconductor device. A substrate having a damascene structure formed by etching a dielectric layer formed thereon using an overlying photoresist mask as an etching mask is provided. A cleaning process is performed by a supercritical fluid to remove the photoresist mask and post-etching by-products. An interconnect layer is formed in-situ in the damascene structure using the supercritical fluid as a reaction medium, wherein the cleaning process and the subsequent interconnect layer formation are performed in one process chamber or in different process chambers of a processing tool.
摘要:
An organic layer, such as a porous low-K dielectric in an IC, contains pores open at its surface. To close the pores, the organic layer is contacted by a supercritical fluid that is a solvent for the layer. After a small amount of the surface and the wall of the open pores is solvated, a phase transition of the solvated organic material is effected at the surface to cover it with a dense, smooth, non-porous film that seals the open pores.
摘要:
An organic layer, such as a porous low-K dielectric in an IC, contains pores open at its surface. To close the pores, the organic layer is contacted by a supercritical fluid that is a solvent for the layer. After a small amount of the surface and the wall of the open pores is solvated, a phase transition of the solvated organic material is effected at the surface to cover it with a dense, smooth, non-porous film that seals the open pores.
摘要:
System and method for reducing damage to a semiconductor substrate when using cleaning fluids at elevated pressures to clean the semiconductor substrates. A preferred embodiment comprises applying the cleaning fluid at a first pressure for a first time period, wherein the first pressure is relatively low, and then increasing the pressure of the cleaning fluid to a pressure level that can effectively clean the semiconductor substrate and maintaining the pressure level for a second time period. The application of the cleaning fluid at the relatively low initial pressure acts as a temporary filler and creates a buffer of the cleaning fluid on the semiconductor substrate and helps to dampen the impact of the subsequent high pressure application of the cleaning fluid on the semiconductor substrate.
摘要:
The present disclosure provides for a method and system for fabricating an insulating layer on a substrate. The method and system provide a fluid to a substrate, wherein the fluid is provided in an aerosol form. The method and system also provides for generating a supercritical process environment proximate to the substrate. The method and system further provides a proximate supercritical process environment having a supercritical process temperature and a supercritical process pressure for altering the fluid, and placing the substrate in contact with the altered fluid, wherein the insulating layer is formed on the substrate by a reaction between the substrate and the fluid.
摘要:
A method of forming an oxide layer. A fluid, such as water, is heated and pressurized to supercritical or near-supercritical conditions and mixed with at least one oxidizing agent. The supercritical state mixture of the fluid and at least one oxidizing agent is then applied on the workpiece, forming an oxide layer on the workpiece. The at least one oxidizing agent may comprise nitrogen, and the oxide layer formed on the workpiece may comprise a nitrogen doped oxide.
摘要:
A new and improved method for exposing alignment marks on a substrate by locally cutting through a metal or non-metal layer or layers sequentially deposited on the substrate above the alignment marks, using focused ion beam (FIB) technology. In a preferred embodiment, a method for exposing alignment marks on a substrate can be carried out by first providing a substrate that has multiple alignment marks provided thereon and at least one overlying opaque layer, typically but not necessarily metal, deposited on the substrate above the alignment marks. A focused ion beam is then directed against the overlying opaque layer or layers to cut through the layer or layers and expose the alignment marks on the substrate. A noble gas, preferably argon, is typically used as the ion source for the focused ion beam.
摘要:
A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
摘要:
The invention relates to disks for conditioning pads used in the chemical mechanical polishing of semiconductor wafers, and a method of fabricating the pads. In one embodiment, the conditioning pad includes multiple, pyramid-shaped, truncated protrusions which are cut or shaped in the surface of a typically stainless steel substrate. Each of the truncated protrusions includes a plateau in the top thereof. A seed layer, typically titanium nitride (TiN), is provided on the surface of the protrusions, and a contact layer such as diamond-like carbon (DLC) or other suitable film is provided over the seed layer. In another embodiment, each of the protrusions is pyramid-shaped and includes a pointed apex at the top thereof.
摘要:
A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.