摘要:
System and method for reducing damage to a semiconductor substrate when using cleaning fluids at elevated pressures to clean the semiconductor substrates. A preferred embodiment comprises applying the cleaning fluid at a first pressure for a first time period, wherein the first pressure is relatively low, and then increasing the pressure of the cleaning fluid to a pressure level that can effectively clean the semiconductor substrate and maintaining the pressure level for a second time period. The application of the cleaning fluid at the relatively low initial pressure acts as a temporary filler and creates a buffer of the cleaning fluid on the semiconductor substrate and helps to dampen the impact of the subsequent high pressure application of the cleaning fluid on the semiconductor substrate.
摘要:
An organic layer, such as a porous low-K dielectric in an IC, contains pores open at its surface. To close the pores, the organic layer is contacted by a supercritical fluid that is a solvent for the layer. After a small amount of the surface and the wall of the open pores is solvated, a phase transition of the solvated organic material is effected at the surface to cover it with a dense, smooth, non-porous film that seals the open pores.
摘要:
An organic layer, such as a porous low-K dielectric in an IC, contains pores open at its surface. To close the pores, the organic layer is contacted by a supercritical fluid that is a solvent for the layer. After a small amount of the surface and the wall of the open pores is solvated, a phase transition of the solvated organic material is effected at the surface to cover it with a dense, smooth, non-porous film that seals the open pores.
摘要:
A method of integrating a post-etching cleaning process with deposition for a semiconductor device. A substrate having a damascene structure formed by etching a dielectric layer formed thereon using an overlying photoresist mask as an etching mask is provided. A cleaning process is performed by a supercritical fluid to remove the photoresist mask and post-etching by-products. An interconnect layer is formed in-situ in the damascene structure using the supercritical fluid as a reaction medium, wherein the cleaning process and the subsequent interconnect layer formation are performed in one process chamber or in different process chambers of a processing tool.
摘要:
A wafer based APC method for controlling an oxide (Cu, or TaN) polish step is described and combines a feed forward model that compensates for incoming wafer variations with a feed backward model which compensates for CMP variations. The method is geared toward minimizing Rs 3σ variations. A Rs target value is inputted with metrology data from previous processes that affects the width and thickness of the copper layer. A copper thickness target and polish time for the first wafer is determined. Post CMP measurement data of the first wafer is used to modify the polish rate with a disturbance factor and an updated polish time is computed for subsequent wafers. The CMP recipe for each wafer is adjusted with metrology data and post CMP measurements. The APC method is successful in controlling copper Rs variations for the 90 nm technology node and is independent of copper pattern density.
摘要:
A method and apparatus for locally etching a substrate area the method including providing a substrate comprising a process surface; depositing a material layer over the process surface; and, applying a wet etchant to cover a targeted etching portion of the process surface while excluding an adjacent surrounding area to selectively etch the material layer overlying the targeted etching portion.
摘要:
A wafer based APC method for controlling an oxide (Cu, or TaN) polish step is described and combines a feed forward model that compensates for incoming wafer variations with a feed backward model which compensates for CMP variations. The method is geared toward minimizing Rs 3σ variations. A Rs target value is inputted with metrology data from previous processes that affects the width and thickness of the copper layer. A copper thickness target and polish time for the first wafer is determined. Post CMP measurement data of the first wafer is used to modify the polish rate with a disturbance factor and an updated polish time is computed for subsequent wafers. The CMP recipe for each wafer is adjusted with metrology data and post CMP measurements. The APC method is successful in controlling copper Rs variations for the 90 nm technology node and is independent of copper pattern density.
摘要:
A method and apparatus for locally etching a substrate area the method including providing a substrate comprising a process surface; depositing a material layer over the process surface; and, applying a wet etchant to cover a targeted etching portion of the process surface while excluding an adjacent surrounding area to selectively etch the material layer overlying the targeted etching portion.
摘要:
A new and improved method for exposing alignment marks on a substrate by locally cutting through a metal or non-metal layer or layers sequentially deposited on the substrate above the alignment marks, using focused ion beam (FIB) technology. In a preferred embodiment, a method for exposing alignment marks on a substrate can be carried out by first providing a substrate that has multiple alignment marks provided thereon and at least one overlying opaque layer, typically but not necessarily metal, deposited on the substrate above the alignment marks. A focused ion beam is then directed against the overlying opaque layer or layers to cut through the layer or layers and expose the alignment marks on the substrate. A noble gas, preferably argon, is typically used as the ion source for the focused ion beam.
摘要:
The invention relates to disks for conditioning pads used in the chemical mechanical polishing of semiconductor wafers, and a method of fabricating the pads. In one embodiment, the conditioning pad includes multiple, pyramid-shaped, truncated protrusions which are cut or shaped in the surface of a typically stainless steel substrate. Each of the truncated protrusions includes a plateau in the top thereof. A seed layer, typically titanium nitride (TiN), is provided on the surface of the protrusions, and a contact layer such as diamond-like carbon (DLC) or other suitable film is provided over the seed layer. In another embodiment, each of the protrusions is pyramid-shaped and includes a pointed apex at the top thereof.