Abstract:
An anisotropic conductive film, capable of connecting a terminal formed on a substrate having a wavy surface such as a ceramic module substrate with conduction characteristics stably maintained, includes an insulating adhesive layer, and conductive particles regularly arranged in the insulating adhesive layer as viewed in a plan view. The conductive particle diameter is 10 μm or more, and the thickness of the film is 1 or more times and 3.5 or less times the conductive particle diameter. The variation range of the conductive particles in the film thickness direction is less than 10% of the conductive particle diameter.
Abstract:
There are provided an electrically conductive adhesive agent capable of providing good electrical continuity to a substrate to which a preflux treatment has been applied, and a method for connecting electronic components. The electrically conductive adhesive agent to be used includes a polymerizable acrylic compound, an organic peroxide, and the solder particles, the organic peroxide having a one minute half-life temperature lower than the solidus temperature of the solder particles. At the time of thermocompression bonding, the solder particles are crushed and an oxide film is removed, and a preflux layer on the surface of a bump is also removed by melting and flowing thereof, whereby electrical continuity is secured, and then an adhesive component is completely cured.
Abstract:
Provided are an adhesive agent capable of providing sufficient electrical continuity to a substrate to which a preflux treatment has been applied and a method for connecting electronic components. There is used an adhesive agent including a (meth)acrylate having an epoxy group in one molecule and a radical polymerization initiator having a one minute half-life temperature of 110 degrees C. or more. A surplus adhesive agent component between terminals flows, whereby an imidazole component in a preflux, the component binding to an epoxy group of an epoxy group-containing acrylate, is drawn out thereby to be removed from a surface of the terminal.
Abstract:
To provide an insulating resin film, which contains: a first adhesive layer; and a second adhesive layer, wherein the insulating resin film is configured to bond a substrate and an electronic part together, and the first adhesive layer is provided at a side of the substrate and the second adhesive layer is provided at a side of the electronic part, wherein the first adhesive layer and the second adhesive layer each contain inorganic filler, wherein the second adhesive layer has a DSC exothermic peak temperature that is higher than a DSC exothermic peak temperature of the first adhesive layer, and wherein a thickness of the first adhesive layer is 50% to 90% of a total thickness of the insulating resin film.
Abstract:
There are provided an electrically conductive adhesive agent capable of providing good electrical continuity to a substrate to which a preflux treatment has been applied, and a method for connecting electronic components. The electrically conductive adhesive agent to be used includes a polymerizable acrylic compound, an organic peroxide, and the solder particles, the organic peroxide having a one minute half-life temperature lower than the solidus temperature of the solder particles. At the time of thermocompression bonding, the solder particles are crushed and an oxide film is removed, and a preflux layer on the surface of a bump is also removed by melting and flowing thereof, whereby electrical continuity is secured, and then an adhesive component is completely cured.
Abstract:
A semiconductor device includes a semiconductor chip provided with a plurality of bumps arranged in a peripheral alignment, a substrate provided with a plurality of electrodes, and an insulating resin adhesive film. The semiconductor chip is affixed to the substrate via the insulating resin adhesive film such that the electrodes are in positions corresponding to the positions of the bumps. The insulating resin adhesive film has a minimum melt viscosity of 8×103 to 1×105 Pa·s, covers 70 to 90% the area of the region enclosed with the plurality of bumps, and heat cured. The bumps and the electrodes corresponding thereto are arranged so that they are opposed to each other and establish metallic contact therebetween. A periphery of the insulating resin adhesive film is defined between the plurality of bumps and the outer edge of the semiconductor chip, exclusive.
Abstract:
An anisotropic conductive connection structure body includes: a first electrode terminal on a surface of which a protruding portion is formed; a second electrode terminal; and an anisotropic conductive adhesive layer containing electrically conductive particles that provide conduction between the first electrode terminal and the second electrode terminal. A ratio of a height of the protruding portion to a before-compression particle size of the electrically conductive particle is less than 60%, an opening area ratio of the first electrode terminal is more than or equal to 55%, and a height of the second electrode terminal is more than or equal to 6 μm.