Abstract:
A laser apparatus includes a first optical element, a second optical element, a first actuator configured to change a first wavelength component included in a pulse laser beam by changing a posture of the first optical element, a second actuator configured to change a second wavelength component included in the pulse laser beam by changing a posture of the second optical element, a first encoder configured to measure a position of the first actuator, a second encoder configured to measure a position of the second actuator, and a processor. The processor reads a first relation and a second relation and performs control of the first actuator based on the first relation and the position of the first actuator measured by the first encoder and control of the second actuator based on the second relation and the position of the second actuator measured by the second encoder.
Abstract:
A laser processing method according to a viewpoint of the present disclosure includes radiating ultraviolet pulse laser light onto a workpiece having a stacked structure in which a conductor layer, an insulating layer, and a sacrificial layer are stacked on each other in the presented order, the pulse laser light radiated from the side facing the sacrificial layer, to change a laser ablation processing mode in the sacrificial layer and form a through hole in the sacrificial layer, radiating the pulse laser light onto the insulating layer through the through hole to form an opening in the insulating layer, and removing the sacrificial layer after the formation of the opening.
Abstract:
A discharge-pumped gas laser device may include a laser chamber, a pair of discharge electrodes provided in the laser chamber, a fan with a magnetic bearing being provided in the laser chamber and configured to be capable of circulating a gas in the laser chamber, a housing configured to contain the laser chamber, and a magnetic bearing controller connected to the magnetic bearing electrically, being capable of controlling the magnetic bearing, and provided in the housing separately from the laser chamber.
Abstract:
A preliminary ionization discharge device used in a laser chamber of a laser apparatus using preliminary ionization includes a dielectric pipe; a preliminary ionization inner electrode provided inside the dielectric pipe; and a preliminary ionization outer electrode provided outside the dielectric pipe. The preliminary ionization outer electrode includes: a contact plate part configured to contact the dielectric pipe; and an elastic part configured to exert a force in a direction in which the contact plate part pushes the dielectric pipe.
Abstract:
A two-beam interference apparatus may include a wafer stage on which a wafer may be set, a beam splitter to split first laser light into second and third laser light having a beam intensity distribution elongated in a first direction within a surface of the wafer, and an optical system to guide the second and third laser light onto the wafer. The wafer is irradiated with the second laser light from a second direction perpendicular to the first direction, and the third laser light from a third direction perpendicular to the first direction but different from the second direction, to thereby cause interference of the second and third laser light on the wafer. This apparatus increases the accuracy of the two-beam interference exposure.
Abstract:
A gas laser apparatus includes a voltage application circuit, a chamber device that includes an electrode and is configured to output light generated when a voltage is applied to the electrode from the voltage application circuit, a first pallet that includes a mounting surface on which the chamber device and the voltage application circuit are disposed in parallel with each other, and a housing unit in and out of which the first pallet is movable by movement in an in-plane direction of the mounting surface.
Abstract:
A laser exposure system may include a plurality of laser devices configured to output laser beams with which an irradiated subject is irradiated, and at least one beam property adjustment unit disposed on optical paths of the laser beams outputted from the plurality of laser devices, and configured to allow beam properties of the laser beams to be approximately a same as each other.
Abstract:
A chamber device includes a housing into which a laser gas is filled, a pair of discharge electrodes generating light from the laser gas when a voltage is applied thereto, a window arranged at a wall surface of the housing and transmitting the light therethrough, a first fan causing the laser gas to flow between the discharge electrodes, a filter, a second fan rotating together with the first fan by a drive force of a drive source of the first fan, a fan-side flow path causing the laser gas filtered by the filter to flow by the second fan and a part of the laser gas to flow in a direction away from the window, and a window-side flow path communicating with the fan-side flow path and causing the laser gas flowing from the fan-side flow path by the second fan to flow toward the window.
Abstract:
A spheroidal mirror reflectivity measuring apparatus for extreme ultraviolet light may include an extreme ultraviolet light source, an optical system, and a first photosensor. The extreme ultraviolet light source may be configured to output extreme ultraviolet light to a spheroidal mirror that includes a spheroidal reflection surface. The optical system may be configured to allow the extreme ultraviolet light to travel to the spheroidal reflection surface via a first focal position of the spheroidal mirror. The first photosensor may be provided at a second focal position of the spheroidal mirror, and may be configured to detect the extreme ultraviolet light that has passed through the first focal position and then has been reflected by the spheroidal reflection surface.
Abstract:
There is provided a laser chamber housing a pair of discharge electrodes and a gas circulation fun, the laser chamber including: a magnetic bearing configured to support a shaft of the gas circulation fan, with the shaft being in non-contact with the magnetic bearing; and a touchdown bearing configured to operate as a bearing when the magnetic bearing is uncontrollable, the touchdown bearing being provided with solid lubricant configured of one or more of an Au plating layer, a Ni-containing plating layer, and a Cu plating layer.