Abstract:
Methods for reducing the junction temperature between an IC chip and its lid by including metal spacers in the TIM layer and the resulting devices are disclosed. Embodiments include providing a substrate, including integrated circuit devices, having front and back sides; forming vertical spacers on the backside of the substrate; providing a plate parallel to and spaced from the backside of the substrate; and forming a TIM layer, surrounding the vertical spacers, between the backside of the substrate and the plate.
Abstract:
Methods for removing low-k dielectric material from dicing lanes in a bonded pair of IC wafers and the resulting device are disclosed. Embodiments include providing low-k dielectric and standard dielectric layers on upper surfaces of top and bottom IC substrates, each including an array of adjacent IC die areas separated by dicing lanes; removing from the dicing lanes the standard and low-k dielectric layers to form cavities exposing sections of the upper surfaces of IC substrates; depositing a standard dielectric material in the cavities and on upper surfaces of the standard dielectric layer of the top and bottom IC substrates; planarizing upper surfaces of the standard dielectric material of the IC substrates; forming a face-to-face bonding of the IC substrates, wherein the dicing lanes in the IC substrates are vertically aligned; and dicing adjacent bonded IC die areas through vertically aligned dicing lanes in the IC substrates.
Abstract:
A methodology for forming trench capacitors on an interposer wafer by an integrated process that provides high-capacitance, ultra-low profile capacitor structures and the resulting device are disclosed. Embodiments include forming a polymer block on a front side of an interposer wafer, patterning and etching the polymer block to form one or more trenches, and forming a capacitor on an upper surface of the polymer block and in the one or more trenches.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to wafer bond interconnect structures and methods of manufacture. The structure includes: a plurality of sub-pixels each comprising a contact plate; and redundant connections at opposite corners of each sub-pixel on a backside of the contact plate.
Abstract:
Methods for preparing 3D integrated semiconductor devices and the resulting devices are disclosed. Embodiments include forming a first and a second bond pad on a first and a second semiconductor device, respectively, the first and the second bond pads each having plural metal segments, the metal segments of the first bond pad having a configuration different from a configuration of the metal segments of the second bond pad or having the same configuration as a configuration of the metal segments of the second bond pad but rotated with respect to the second bond pad; and bonding the first and second semiconductor devices together through the first and second bond pads.
Abstract:
Methods for preparing 3D integrated semiconductor devices and the resulting devices are disclosed. Embodiments include forming a first and a second bond pad on a first and a second semiconductor device, respectively, the first and the second bond pads each having plural metal segments, the metal segments of the first bond pad having a configuration different from a configuration of the metal segments of the second bond pad or having the same configuration as a configuration of the metal segments of the second bond pad but rotated with respect to the second bond pad; and bonding the first and second semiconductor devices together through the first and second bond pads.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a micro-light emitting diode (LED) display assembly and methods of manufacture. The structure includes an interposer and a plurality of micro-LED arrays each of which include a plurality of through-vias connecting pixels of the plurality of micro-LED arrays to the interposer.
Abstract:
A methodology for forming trench capacitors on an interposer wafer by an integrated process that provides high-capacitance, ultra-low profile capacitor structures and the resulting device are disclosed. Embodiments include forming a polymer block on a front side of an interposer wafer, patterning and etching the polymer block to form one or more trenches, and forming a capacitor on an upper surface of the polymer block and in the one or more trenches.
Abstract:
Wafer-level methods of forming circuit elements, such as multilayer inductors or transformers, are provided. The methods include, for instance: forming, in at least one layer above a substrate, at least one conductive portion of the circuit element; providing an uncured polymer-dielectric material surrounding, at least in part, and overlying the conductive portion(s) of the element; partially curing the polymer-dielectric material to obtain a partially-hardened, polymer-dielectric material; and polishing the partially-hardened, polymer-dielectric material down to the conductive portion(s). The polishing planarizes the partially-hardened, polymer-dielectric material and exposes an upper surface of the conductive portion(s) to facilitate forming at least one other conductive portion of the element above and in electrical contact with the conductive portion(s). After polishing, curing of the polymer-dielectric material is completed. In one embodiment, the conductive portion(s) and the other conductive portion(s) define, at least in part, a conductive coil(s) of the element.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to an interconnect structure to connect between different package configurations and methods of manufacture. The structure includes an interconnect comprising a plurality of conductive levels and columns configured into a grid pattern within an insulator material, the plurality of conductive levels and columns aligned to connect to different package configurations; and a control circuit that provides a signal to the interconnect to connect to a combination of the different package configurations.