Methods for making hydrothermally crystallized water-dispersible hexaferrite platelets

    公开(公告)号:US10829386B1

    公开(公告)日:2020-11-10

    申请号:US16203788

    申请日:2018-11-29

    IPC分类号: C01G49/00 B82Y40/00

    摘要: Some variations provide a method of making water-dispersed hexaferrite nanoparticles, comprising: providing a first salt containing iron, a second salt containing barium and/or strontium, and a third salt containing an anion or cation that is capable of forming a ligand with the hexaferrite nanoparticles; combining the first salt, second salt, third salt, and water to form a reaction mixture; subjecting the reaction mixture to effective reaction conditions to produce hexaferrite nanoparticles with the anion or cation in the third salt forming a ligand on the surface, so that the hexaferrite nanoparticles are dissolved and/or suspended in the reaction mixture; and obtaining water-dispersed hexaferrite nanoparticles with an average zeta potential of at least ±20 mV. The water-dispersed hexaferrite nanoparticles have a hexaferrite content of at least 85 wt %. The method may further include assembling water-dispersed hexaferrite nanoparticles into a magnetic component, such as a self-biased hexaferrite film on a semiconductor substrate.

    Recursive metal embedded chip assembly

    公开(公告)号:US10026672B1

    公开(公告)日:2018-07-17

    申请号:US15299348

    申请日:2016-10-20

    摘要: A recursive metal-embedded chip assembly (R-MECA) process and method is described for heterogeneous integration of multiple die from diverse device technologies. The recursive aspect of this integration technology enables integration of increasingly-complex subsystems while bridging different scales for devices, interconnects and components. Additionally, the proposed concepts include high thermal management performance that is maintained through the multiple recursive levels of R-MECA, which is a key requirement for high-performance heterogeneous integration of digital, analog mixed signal and RF subsystems. At the wafer-scale, chips from diverse technologies and different thicknesses are initially embedded in a metal heat spreader surrounded by a mesh wafer host. An embodiment uses metal embedding on the backside of the chips as a key differentiator for high-density integration, and built-in thermal management. After die embedding, wafer-level front side interconnects are fabricated to interconnect the various chips and with each other. The wafer is then diced into individual metal-embedded chip assembly (MECA) modules, and forms the level one for multi-scale R-MECA integration. These modules are subsequently integrated into another wafer or board using the same integration approach recursively. Additional components such as discrete passive resistors, capacitors and inductors can be integrated at the second level, once the high-resolution, high-density integration has been performed at level zero. This recursive integration offers a practical solution to build very large scale integrated systems and subsystems.

    Method and apparatus to increase radar range

    公开(公告)号:US11536800B2

    公开(公告)日:2022-12-27

    申请号:US17207470

    申请日:2021-03-19

    摘要: An integrated radar circuit comprising: a first substrate, of a first semiconductor material, said first substrate comprising an integrated transmit and receive radar circuit; a second substrate, of a second semiconductor material, said second substrate comprising at least on through-substrate cavity having cavity walls; at least one discrete transistor chip, of a third semiconductor material, said at least one discrete transistor chip having chip walls and being held in said at least one through-substrate cavity by a metal filling extending from at least one cavity wall to at least one chip wall; a conductor on said second substrate, electrically connecting a portion of said integrated transmit and receive radar circuit to a discrete transistor on said at least one discrete transistor chip.

    Impedance-matched through-wafer transition using integrated heat-spreader technology

    公开(公告)号:US10950562B1

    公开(公告)日:2021-03-16

    申请号:US16559486

    申请日:2019-09-03

    摘要: A microwave electronic component comprising a substrate having top and bottom substrate surfaces; the substrate comprising an aperture between the top and bottom substrate surfaces; a metallic heat sink filling the aperture; a microwave integrated circuit having a top circuit surface with at least one microwave signal port and a bottom circuit surface in contact with the metallic heat sink; a signal line comprising at least a metallic via between the top and bottom substrate surfaces, and a top signal conductor arranged between the microwave signal port and the metallic via; wherein the dimensions and location of the metallic via are chosen such that the metallic via forms, together with the metallic heat sink, a first impedance-matched non-coaxial transmission line.

    Method and Apparatus for Integrated Shielded Circulator

    公开(公告)号:US20200006833A1

    公开(公告)日:2020-01-02

    申请号:US16396074

    申请日:2019-04-26

    摘要: An RF circulator in combination with a RF integrated circuit, the RF integrated circuit having a plurality of RF waveguide or waveguide-like structures in or on the RF integrated circuit, the RF circulator comprising a disk of ferrite material disposed on a metallic material disposed on or in the RF integrated circuit, the disk of ferrite material extending away from the RF integrated circuit when disposed thereon, the metallic portion having a plurality of apertures therein adjacent the disk of ferrite material which, in use, are in electromagnetic communication with the disk of ferrite material and with the plurality of RF waveguide or waveguide-like structures, the disk of ferrite material being disposed in a metallic cavity.