摘要:
A compliant thermally conductive, preferably dielectric, compound that enhances the power dissipation capability of high-powered electrical components such as bipolar VLSI semiconductor chips. The compound has chemically stable thermal conduction and viscosity properties; is not subject to phase separation during use and may be applied in small gaps to maximize thermal conduction. The compound preferably comprises a liquid carrier having thermal filler particles dispersed therein and a coupling agent having a functionality which is reactive with the calcined surface of the thermal filler particles, and a functionality having preferential wetting of the thermal filler particles over self-condensation. Additional additives such as fumed silica and polyisobutylene enhance the phase stability and resistance to thermo-mechanical shear force degradation of the thermally conductive compound encountered during functional usage, e.g., fluctuating power cycles.
摘要:
A process for making a compliant thermally conductive, preferably dielectric, compound that enhances the power dissipation capability of high-powered electrical components such as bipolar VLSI semiconductor chips. The compound has chemically stable thermal conduction and viscosity properties; is not subject to phase separation during use and may be applied in small gaps to maximize thermal conduction. The compound preferably comprises a liquid carrier having thermal filler particles dispersed therein and a coupling agent having a functionality which is reactive with the calcined surface of the thermal filler particles, and a functionality having preferential wetting of the thermal filler particles over self-condensation. Additional additives such as fumed silica and polyisobutylene enhance the phase stability and resistance to thermo-mechanical shear force degradation of the thermally conductive compound encountered during functional usage, e.g., fluctuating power cycles.
摘要:
The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addressed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
摘要:
The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addresssed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
摘要:
This invention is directed to a capacitor having a multilevel interconnection technology. At least one solder ball is reflowed and secured onto the capacitor. The solder ball is in electrical communication with the capacitor through a contact. On this reflowed solder ball a cap of low melting point metal is secured. This can be done in a number of ways. The preferred way is to positioning a mask over the solder ball such that a portion of the solder ball is exposed through openings in the mask. At least one layer of a low melting point metal is deposited on the exposed surface of the solder ball through the mask, and thereby forming a capacitor with a multilevel interconnect cap. The low melting point metal can interact with the surface of the solder ball to form a cap of an eutectic or a liquefied portion. The cap portion can then be joined to the object.
摘要:
A method of producing electronic components is disclosed wherein an insulator is in situ cured. The insulator is comprised of a polymerizable oligomer end capped with vinyl and/or acetylenic end groups which both imidize and cross-link upon cure to provide a three-dimensional dielectric network.
摘要:
Thin dielectric films are formed on an electronic component by in situ curing a polymerizable oligomer which is end capped with vinyl and/or acetylenic end groups. The polymerizable oligomers are comprised of polyamic acids, polyamic esters, polyisoimides, and mixtures thereof which can be crosslinked to form a three-dimensional network via sites at the vinyl or acetylenic end groups and sites at carbonyl groups contained within the polymeric chain. Use of these polymerizable oligomers permits utilization of low temperature methods of curing which reduce intrinsic and extrinsic stress within the cured dielectric film.
摘要:
The photosensitivity of a particular group of polymerizable oligomers permits radiation induced polymerization. This photosensitivity thus enables the polymerizable oligomers to be used as photoresists in general, and facilitates in situ cure when the oligomers are used to produce isolation films and trenches in semiconductor devices. The photosensitivity further enables use of a simplified planarization process when the polymerizable oligomers are used in the fabrication of semiconductor structures and integrated circuit components. Specifically, the polymerizable oligomers are comprised of poly N-substituted amic acids, the corresponding amic esters, the corresponding amic isoimides, the corresponding amic imids or mixtures thereof, wherein the end groups of the polymerizable oligomer are end capped with a vinyl or acetylinic end group.
摘要:
Disclosed is a process for planarization of semiconductor structures having dielectric isolation regions. Specifically, the process is directed to planarization of an organic polyimide layer obtained following filling of deep trenches in a semiconductor substrate having high and low density trench regions with this material. After over-filling the trenches with the polyimide and obtaining a non-planar polyimide layer having a thickness much larger in the low trench density regions than that in the high density regions, a photoresist layer is applied thereover. The photoresist is then controllably exposed using a mask which is the complement or inverse of the mask used for imaging the trench patterns to obtain a thick blockout photoresist mask over the trenches and a thin wetting layer of photoresist over the remainder of the substrate. Next, by means of a thermal step, the blockout photoresist is caused to reflow to form a relatively thick photoresist layer over the high trench density regions and a thin photoresist layer over the low trench density regions, thereby exactly compensating for the non-planarity of the polyimide layer.
摘要:
Acetylene or vinyl-terminated polymerizable oligomers of polyamic acid are fractionated to obtain an oligomer product having a molecular weight in the range of 2,000 to 4,000 which exhibits improved wetting and film forming properties. Fractionization is accomplished by dissolving the unfractionated polymerizable oligomer in a solvent in which the desired molecular weight fraction is soluble. The oligomer solution is passed through a filter which removes undissolved material having a molecular weight in excess of the desired molecular weight range. The filtrate is admixed with a hydrocarbon to precipitate the desired molecular weight fraction. Thereafter the collected solids can be redissolved in a ketonic solvent and the fractionation procedure repeated to further improve the molecular weight content of the fractionated oligomer.