摘要:
A method is disclosed for depositing silicon with high deposition rates and good step coverage. The process is performed at high pressures, including close to atmospheric pressures, at temperatures of greater than about 650° C. Silane and hydrogen are flowed over a substrate in a single-wafer chamber. Advantageously, the process maintains good step coverage and high deposition rates (e.g., greater that 50 nn/min) even when dopant gases are added to the process, resulting in commercially practicable rates of deposition for conductive silicon. Despite the high deposition rates, step coverage is sufficient to deposit polysilicon into extremely deep trenches and vias with aspect ratios as high as 40:1, filling such structures without forming voids or keyholes.
摘要:
A method is disclosed for depositing silicon with high deposition rates and good step coverage. The process is performed at high pressures, including close to atmospheric pressures, at temperatures of greater than about 650° C. Silane and hydrogen are flowed over a substrate in a single-wafer chamber. Advantageously, the process maintains good step coverage and high deposition rates (e.g., greater that 50 nn/min) even when dopant gases are added to the process, resulting in commercially practicable rates of deposition for conductive silicon. Despite the high deposition rates, step coverage is sufficient to deposit polysilicon into extremely deep trenches and vias with aspect ratios as high as 40:1, filling such structures without forming voids or keyholes.
摘要:
An apparatus is described for generating excited and/or ionized particles in a plasma with a generator for generating an electromagnetic wave and an excitation chamber with a plasma zone in which the excited and/or ionized particles are formed. At least one excitation chamber is arranged in an insulating material off-center relative to a ring-cylindrical outer conductor.
摘要:
The invention relates to a device for generating excited and/or ionized particles in a plasma from a process gas, which comprises a generator for generating an electromagnetic wave, a waveguide, and a gas discharge chamber with a gas discharge space in which the excited and/or ionized particles are formed, and comprising a dielectric in which the gas discharge space is formed, the gas discharge chamber being arranged inside the waveguide. In order to be able to use the largest possible microwave powers while achieving a long service life, the dielectric forms an end base from which side walls branch off so as to form the gas discharge space. The electromagnetic wave can also be coupled into the end base.
摘要:
A method for forming an oxide layer on a substrate is described, wherein a plasma is generated adjacent to at least one surface of the substrate by means of microwaves from a gas containing oxygen, wherein the microwaves are coupled into the gas by a magnetron via at least one microwave rod, which is arranged opposite to the substrate and comprises an outer conductor and an inner conductor. During the formation of the oxide layer, the mean microwave power density is set to P=0.8-10 W/cm2, the plasma duration is set to t=0.1 to 600 s, the pressure is set to p=2.67-266.64 Pa (20 to 2000 mTorr) and a distance between substrate surface and microwave rod is set to d=5-120 mm. The above and potentially further process conditions are matched to each other such that the substrate is held at a temperature below 200° C. and an oxide growth is induced on the surface of the substrate facing the plasma.
摘要:
The present invention relates to the use of a highly concentrated solution of one or more hafnium alkoxides as precursors for hafnium oxide and hafnium oxynitride layers. The present invention relates in particular to the use of a 30 to 90% strength by weight solution of one or more hafnium alkoxides for producing hafnium oxide and hafnium oxynitride layers for CVD or ALD methods. In addition, the invention relates to a process for the production of a hafnium oxide and hafnium oxynitride layer on an article to be coated, and a hafnium alkoxide solution which contains 30 to 90% by weight of one or more hafnium alkoxides. In a further embodiment of the invention, hafnium is replaced by zirconium in said compounds.
摘要:
Process for forming a dielectric. The process may include forming the dielectric on a metallization and capacitor arrangement. The process allows the direct application of a dielectric layer to a copper-containing metallization. Accordingly, two process gases may be excited with different plasma powers per unit substrate area, or one process gas may be excited with a plasma and another process gas may not be excited.
摘要:
A method and apparatus for measuring the emission coefficient of a semiconductor material for light of wavelength .lambda. having photon energy less than the semiconductor bandgap energy is introduced. The reflection coefficient for the light of wavelength .lambda. is measured while the semiconductor material is being irradiated with sufficient light having photon energy greater than the bandgap energy that the semiconductor material transmits little light of wavelength .lambda., and the emission coefficient is calculated from the measured reflection coefficient. The temperature of the semiconductor material can be calculated from the emission coefficient and the measured intensity of the thermally emitted radiation of wavelength .lambda..
摘要:
In the ozone-activated deposition of insulating layers, different growth rates can be achieved on differently constituted surfaces. When the surfaces of the structured silicon substrates lying at different levels are differently constituted or, respectively, are intentionally varied such that the SiO.sub.2 insulating layer grows more slowly on the higher surfaces than on the more deeply disposed surfaces and when deposition is carried out until the surfaces of the rapidly growing and slowly growing layer regions form a step-free, planar level, a local and global planarization is achieved.
摘要:
Process for forming a dielectric. The process may include forming the dielectric on a metallization and capacitor arrangement. The process allows the direct application of a dielectric layer to a copper-containing metallization. Accordingly, two process gases may be excited with different plasma powers per unit substrate area, or one process gas may be excited with a plasma and another process gas may not be excited.