摘要:
A method and system for plasma-assisted thin film vapor deposition on a substrate is described. The system includes a process chamber including a first process space having a first volume, a substrate stage coupled to the process chamber and configured to support a substrate and expose the substrate to the first process space, a plasma generation system coupled to the process chamber and configured to generate plasma in at least a portion of the first process space, and a vacuum pumping system coupled to the process chamber and configured to evacuate at least a portion of the first process space. The system further includes a process volume adjustment mechanism coupled to the process chamber and configured to create a second process space that includes at least a part of the first process space and that has a second volume less than the first volume, the substrate being exposed to the second process space.
摘要:
A system for curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The system comprises one or more process modules configured for exposing the low-k dielectric film to electromagnetic (EM) radiation, such as infrared (IR) radiation and ultraviolet (UV) radiation.
摘要:
A method and system for fabricating nano-scale structures, such as channels (i.e., nano-channels) or vias (i.e., nano-vias. An open nano-structure, is formed in a substrate. Thereafter, an optional conformal material film may be deposited within and over the nano-structure using a first deposition process condition, and then the open nano-structure is closed off to form a closed nano-structure using a second deposition process condition, including one or more process steps.
摘要:
A method of depositing a thin film on a substrate in a deposition system is described. The method includes disposing a gas heating device comprising a plurality of heating element zones in a deposition system, and independently controlling a temperature of each of the plurality of heating element zones, wherein each of the plurality of heating element zones having one or more resistive heating elements. Additionally, the method includes providing a substrate on a substrate holder in the deposition system, wherein the substrate holder has one or more temperature control zones. The method further includes providing a film forming composition to the gas heating device coupled to the deposition system, pyrolyzing one or more constituents of the film forming composition using the gas heating device, and introducing the film forming composition to the substrate in the deposition system to deposit a thin film on the substrate.
摘要:
A gas heating device that may be used in a system for depositing a thin film on a substrate using a vapor deposition process is described. The gas heating device may be configured for heating one or more constituents of a film forming composition. The gas heating device comprises one or more resistive heating elements. Additionally, the gas heating device comprises a mounting structure configured to support at least one of the one or more resistive heating elements. Furthermore, the gas heating device comprises a static mounting device coupled to the mounting structure and configured to fixedly couple the at least one of the one or more resistive heating elements to the mounting structure, and a dynamic mounting device coupled to the mounting structure and configured to automatically compensate for changes in a length of the at least one of the one or more resistive heating elements. Further yet, the dynamic mounting device comprises a thermal break configured to reduce heat transfer between the dynamic mounting device and the mounting structure.
摘要:
A system for depositing a thin film on a substrate using a vapor deposition process is described. The deposition system includes a process chamber having a vacuum pumping system configured to evacuate the process chamber, a substrate holder coupled to the process chamber and configured to support the substrate, a gas distribution system coupled to the process chamber and configured to introduce a film forming composition to a process space in the vicinity of a surface of the substrate, a non-ionizing heat source separate from the substrate holder that is configured to receive a flow of the film forming composition and to cause thermal fragmentation of one or more constituents of the film forming composition when heated, and one or more power sources coupled to the heating element array and configured to provide an electrical signal to the at least one heating element zone. The deposition system further includes a remote source coupled to the process chamber and configured to supply a reactive composition to the process chamber to chemically interact with the substrate, wherein the remote source comprises a remote plasma generator, a remote radical generator, a remote ozone generator, or a water vapor generator, or a combination of two or more thereof.
摘要:
A method and system for depositing a thin film on a substrate using a vapor deposition process is described. The processing system comprises a gas heating device for heating one or more constituents of a film forming composition. The gas heating device comprises one or more resistive heating elements configured to receive an electrical current from one or more power sources. Additionally, the gas heating device comprises a mounting structure configured to support the one or more resistive heating elements. Furthermore, the gas heating device comprises one or more static mounting devices coupled to the mounting structure and configured to fixedly couple the one or more resistive heating elements to the mounting structure, and one or more dynamic mounting devices coupled to the mounting structure and configured to automatically compensate for changes in a length of each of the one or more resistive heating elements.
摘要:
A method, computer readable medium, and system for vapor deposition on a substrate that introduce a first process gas composition to a process space according to a first vapor deposition process, deposit a first film on the substrate, introduce a second process gas composition into a second process space different in size than the first process space, and deposit a second film on the substrate from the second process gas composition. As such, the system includes a process chamber including a first process space having a first volume. The process chamber further includes a second process space that includes at least a part of the first process space and that has a second volume different from the first volume. The first process space is configured for a first chemical vapor deposition, and the second process space is configured for a second chemical vapor deposition.
摘要:
A method, computer readable medium, and system for vapor deposition on a substrate that disposes a substrate in a process space of a processing system that is vacuum isolated from a transfer space of the processing system, processes the substrate at either of a first position or a second position in the process space while maintaining vacuum isolation from the transfer space, and deposits a material on said substrate at either the first position or the second position. As such, the system includes a first assembly having a process space configured to facilitate material deposition, a second assembly coupled to the first assembly and having a transfer space to facilitate transfer of the substrate into and out of the deposition system, a substrate stage connected to the second assembly and configured to support and translate the substrate between a first position in the transfer space to a second position in the process space. The system includes a sealing assembly configured to impede gas flow between the process space and the transfer space during translation of the substrate within the process space.
摘要:
Titanium is deposited onto a semiconductor interconnect to form a salicide structure by plasma-enhanced chemical vapor deposition. The reactant gases, including titanium tetrachloride, hydrogen and optionally argon, are combined. A plasma is created using RF energy and the plasma contacts the rotating semiconductor material. This causes titanium to be deposited which reacts with exposed silicon to form titanium silicide without any subsequent anneal. Other titanium deposited on the surface, as well as titanium-rich silicon compositions (TiSi.sub.X wherein X is