摘要:
A method of forming air gaps surrounding conductors in a dielectric layer, the dielectric layer comprising, for example, part of the interconnect structure of an integrated circuit device. The air gaps are formed, in part, by depositing a sacrificial material within a trench and/or via that have been formed in a dielectric layer, and the sacrificial material is ultimately removed after metal deposition to create the air gaps. A porous dielectric cap may be deposited over the dielectric layer, and the sacrificial material may be removed through this porous dielectric layer. Other embodiments are described and claimed.
摘要:
A method of forming air gaps surrounding conductors in a dielectric layer, the dielectric layer comprising, for example, part of the interconnect structure of an integrated circuit device. The air gaps are formed, in part, by depositing a sacrificial material within a trench and/or via that have been formed in a dielectric layer, and the sacrificial material is ultimately removed after metal deposition to create the air gaps. A porous dielectric cap may be deposited over the dielectric layer, and the sacrificial material may be removed through this porous dielectric layer. Other embodiments are described and claimed.
摘要:
Methods and systems for the concentration and removal of metal ions from aqueous solutions are described, comprising treating the aqueous solutions with photoswitchable ionophores.
摘要:
A method for healing detrimental bonds in deposited materials, for example porous, low-k dielectric materials, including oxydatively processing a deposited material, processing the deposited material with a trialkyl group III compound, and processing in the presence of an alcohol. Also included in embodiments of the invention are materials with bonds healed by embodiments of the claimed method.
摘要:
A dielectric layer on a semiconductor substrate is made porous by radiation with UV light. The dielectric material contains a photosensitive moiety that absorbs UV radiation and dissociates from the dielectric material. The UV-activated material then may be diffused to create pores in the dielectric layer, and to provide a dielectric layer having a low dielectric constant.
摘要:
Polymer features may be formed on a substrate by applying a polymer to a photoresist pattern which is subsequently removed to generate the desired polymer features.
摘要:
Method and structure for minimizing the downsides associated with microelectronic device processing adjacent porous dielectric materials are disclosed. In particular, chemical protocols are disclosed wherein porous dielectric materials may be sealed by attaching coupling agents to the surfaces of pores. The coupling agents may form all or part of caps on reactive groups in the dielectric surface or may crosslink to seal pores in the dielectric.
摘要:
A composite photoresist comprises a photoresist material and a filler material dispersed within the photoresist material, wherein the filler material includes a plurality of nanoparticles. The photoresist material may comprise an acrylic-based photoresist, a novolak-based photoresist, a polyhydroxystyrene-based photoresist, a SLAM, or a BARC. The filler material may comprise base-soluble styrene-butadiene rubber nanospheres, nitrile-butadiene rubber nanospheres, polystyrene-based nanoparticles, acrylic-based nanoparticles, or inorganic nanoparticles. The nanoparticles may have an average diameter that is between around 10 nm and around 1000 nm and may have a loading in the photoresist material that is between around 5% and 50%. The composite photoresist may be used to form die-side metal bumps for use in a C4 connection that have a roughened sidewall surface but a smooth top surface.
摘要:
A method for impregnating the pores of a zeolite low-k dielectric layer with a polymer, and forming an interconnect structure therein, thus mechanically strengthening the dielectric layer and preventing metal deposits within the pores.