Abstract:
A method of manufacturing a substrate using a carrier, that includes preparing a carrier having a releasing layer, and insulating layers and metal layers sequentially disposed on both sides of the releasing layer; patterning the metal layers to form base circuit layers; forming buildup layers on the base circuit layers; executing a routing process to separate the insulating layers from the releasing layer; and forming solder resist layers on the buildup layers and forming openings in the solder resist layers and the insulating layers to expose pads.
Abstract:
The invention relates to a carrier used in the manufacture of a substrate and a method of manufacturing a substrate using the carrier, the method including (A) preparing a carrier comprising a releasing layer, and insulating layers and metal layers sequentially disposed on both sides of the releasing layer; (B) patterning the metal layers to form base circuit layers; (C) forming buildup layers on the base circuit layers; (D) executing a routing process to separate the insulating layers from the releasing layer; and (E) forming solder-resist layers on the buildup layers and forming openings in-the solder-resist layers and the insulating layers to expose pads.
Abstract:
A method of manufacturing a substrate using a carrier, that includes preparing a carrier having a releasing layer, and insulating layers and metal layers sequentially disposed on both sides of the releasing layer; patterning the metal layers to form base circuit layers; forming buildup layers on the base circuit layers; executing a routing process to separate the insulating layers from the releasing layer; and forming solder resist layers on the buildup layers and forming openings in the solder resist layers and the insulating layers to expose pads.
Abstract:
A method of fabricating a multilayer printed circuit board, which enables the formation of a micro circuit able to be realized through a semi-additive process using the CTE and rigidity of a metal carrier on a thin substrate which is difficult to convey.
Abstract:
Disclosed is a method of fabricating a multilayer printed circuit board, which enables the formation of a micro circuit able to be realized through a semi-additive process using the CTE and rigidity of a metal carrier on a thin substrate which is difficult to convey.
Abstract:
Disclosed is a method of fabricating a multilayer printed circuit board, which enables the formation of a micro circuit able to be realized through a semi-additive process using the CTE and rigidity of a metal carrier on a thin substrate which is difficult to convey.
Abstract:
Disclosed herein is a method of manufacturing a printed circuit board, comprising: preparing a first carrier including a first pattern formed on one side thereof; preparing a second carrier including a first solder resist layer and a second pattern sequentially formed on one side thereof; pressing the first carrier and the second carrier such that the first pattern is embedded in one side of an insulation layer and the second pattern is embedded in the other side of the insulation layer and then removing the first carrier and the second carrier to fabricate two substrates; attaching the two substrates to each other using an adhesion layer such that the first solder resist layers face each other; and forming a via for connecting the first pattern with the second pattern in the insulation layer, forming a second solder resist on the insulation layer provided with the first pattern, and then removing the adhesion layer.
Abstract:
A printed circuit board, which increases the contact area between an IC and a printed circuit board, thus increasing the degree of adhesion, is disclosed. The printed circuit board includes: an insulation layer which includes a first circuit pattern, including at least one via land, embedded in the upper surface of the insulation layer to be flush with the upper surface, and a second circuit pattern formed in the lower surface of the insulation layer to be flush with the lower surface; a solder resist layer formed on the insulation layer; a via hole and a bump integrally formed on the second circuit pattern through the via hole and the via land such that it protrudes from the insulation layer to be higher than the solder resist layer.
Abstract:
A method of fabricating a printed circuit board, the method including: providing an insulating base body having a first surface on which a first circuit pattern is formed, and a second surface opposite to the first surface; pressing the first surface of the insulating base body onto at least one surface of an insulating layer such that the first circuit pattern is embedded in the insulating layer; forming a resist having a desired pattern on the second surface of the insulating base body; forming a trench by performing a plasma treatment on the second surface of the insulating base body on which the resist is formed; and forming a second circuit pattern by filling the trench with a conductive material. Accordingly, the conductive patterns can be formed using a simple process, thereby enhancing a process rate and productivity.
Abstract:
A printed circuit board according to an aspect of the invention may include: a board portion having an electrode portion provided on a surface thereof; a solder resist layer provided on the surface of the board portion and having an opening therein to expose the electrode portion to the outside; and a bump layer having the same diameter as the opening and providing an electrical connection with an external chip component.