Abstract:
Method and apparatus for reducing metal oxide surfaces to modified metal surfaces and cooling the metal surfaces are disclosed. By exposing a metal oxide surface to remote plasma, the metal oxide surface on a substrate can be reduced to pure metal. A remote plasma apparatus can treat the metal oxide surface as well as actively cool, load/unload, and move the substrate within a single standalone apparatus. The remote plasma apparatus can be configured to actively cool the substrate during and/or after reducing the metal oxide to pure metal using an active cooling system. The active cooling system can include one or more of an actively cooled pedestal, an actively cooled showerhead, and one or more cooling gas inlets for delivering cooling gas to cool the substrate.
Abstract:
Method and apparatus for reducing metal oxide surfaces to modified metal surfaces are disclosed. By exposing a metal oxide surface to a remote plasma, the metal oxide surface on a substrate can be reduced to pure metal and the metal reflowed. A remote plasma apparatus can treat the metal oxide surface as well as cool, load/unload, and move the substrate within a single standalone apparatus. The remote plasma apparatus includes a processing chamber and a controller configured to provide a substrate having a metal seed layer in a processing chamber, form a remote plasma of a reducing gas species where the remote plasma includes radicals, ions, and/or ultraviolet (UV) radiation from the reducing gas species, and expose a metal seed layer of the substrate to the remote plasma to reduce oxide of the metal seed layer to metal and to reflow the metal.
Abstract:
A method of forming an oxygen-containing ceramic hard mask film on a semiconductor substrate involves receiving a semiconductor substrate in a plasma-enhanced chemical vapor deposition (PECVD) process chamber and depositing forming by PEVCD on the substrate an oxygen-containing ceramic hard mask film, the film being etch selective to low-k dielectric and copper, resistant to plasma dry-etch and removable by wet-etch. The method may further involve removing the oxygen-containing ceramic hard mask film from the substrate with a wet etch. Corresponding films and apparatus are also provided.
Abstract:
Implementations of the methods and apparatus disclosed herein relate to pore sealing of porous dielectric films using flowable dielectric material. The methods involve exposing a substrate having an exposed porous dielectric film thereon to a vapor phase dielectric precursor under conditions such that a flowable dielectric material selectively deposits in the pores of the porous dielectric material. The pores can be filled with the deposited flowable dielectric material without depositing a continuous film on any exposed metal surface.
Abstract:
Protective caps residing at an interface between copper lines and dielectric diffusion barrier layers are used to improve various performance characteristics of interconnects. The caps, such as cobalt-containing caps or manganese-containing caps, are selectively deposited onto exposed copper lines in a presence of exposed dielectric using CVD or ALD methods. The deposition of the capping material is affected by the presence of carbon-containing contaminants on the surface of copper, which may lead to poor or uneven growth of the capping layer. A method of removing carbon-containing contaminants from the copper surface prior to deposition of caps involves contacting the substrate containing the exposed copper surface with a silylating agent at a first temperature to form a layer of reacted silylating agent on the copper surface, followed by heating the substrate at a higher temperature to release the reacted silylating agent from the copper surface.
Abstract:
A method of forming an oxygen-containing ceramic hard mask film on a semiconductor substrate involves receiving a semiconductor substrate in a plasma-enhanced chemical vapor deposition (PECVD) process chamber and depositing forming by PEVCD on the substrate an oxygen-containing ceramic hard mask film, the film being etch selective to low-k dielectric and copper, resistant to plasma dry-etch and removable by wet-etch. The method may further involve removing the oxygen-containing ceramic hard mask film from the substrate with a wet etch. Corresponding films and apparatus are also provided.
Abstract:
Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
Abstract:
Methods for depositing flowable dielectric films using halogen-free precursors and catalysts on a substrate are provided herein. Halogen-free precursors and catalysts include self-catalyzing aminosilane compounds and halogen-free organic acids. Flowable films may be used to fill pores in existing dielectric films on substrates having exposed metallization layers. The methods involve hydrolysis and condensation reactions.
Abstract:
Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
Abstract:
Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.