摘要:
A semiconductor device having a multilayer wiring structure which comprises a semiconductor substrate, a first wiring layer deposited on said substrate, and a second wiring layer deposited on said first wiring layer with insulating layers disposed therebetween, wherein the insulating interlayer consists of an inorganic insulating layer and a polyimide-based resin film overlying the inorganic insulating layer. The thickness ratio of the polyimide-based resin film to the inorganic insulating film ranges from 0.1 to 0.5. A method of manufacturing a semiconductor device of a multilayer wiring structure wherein an opening is formed in the insulating interlayer to have a small step.
摘要:
A system is adapted to etch an aluminium film on a semiconductor wafer into a predetermined pattern by immersing the film in an etching solution. The system comprises a voltage detecting circuit for detecting a voltage created between a platinum electrode and the aluminium film on the semiconductor wafer which are immersed in the etching solution, a comparator for comparing a reference voltage with the voltage detected by the voltage detecting circuit to produce an output signal, and a timer for starting a time count operation upon receipt of the output signal from the comparator and for producing an etching completion signal when it continuously receives the output signal from the comparator for a predetermined time period.
摘要:
A metallization structure having a substantially flat surface can be formed on a semiconductor substrate by forming first and second insulating layers on the substrate. The second insulating layer is selectively removed to form grooves therein. Then, a metallic material layer is conformably formed. The metallic layer has grooves corresponding to the grooves of the second insulating layer. A flowable polymer is applied to the surface of the resultant structure to form a layer having a flat surface. The polymer layer and the metallic layer are sequentially ion-etched to expose the second insulating layer. Thus, the metallization structure constituted by the remaining metallic layer and the second insulating layer is formed to have a flat surface.
摘要:
A semiconductor device with a bonding section comprising a semiconductor substrate, a silicon layer formed on the semiconductor substrate with a first insulating layer interposed therebetween, and a bonding pad formed on the silicon layer with a second insulating layer interposed therebetween. The silicon layer has substantially the same size as the bonding pad. When a lead line is bonded to the bonding pad, the silicon layer lessens the stress caused by the bonding.
摘要:
The invention provides a method for fabricating a semiconductor device which comprises the steps of ion-implanting an impurity into a monocrystalline semiconductor substrate; irradiating the region into which the impurity ions have been implanted with an accelerated electron beam under the conditions that the acceleration voltage is 20 to 200 KeV, and the current is 0.01 to 1 mA and the exposure dose is 10.sup.20 to 10.sup.15 /cm.sup.2 ; and carrying out annealing to form a semiconductor region of one conductivity type. According to the present invention, a semiconductor device can be fabricated which has fewer lattice defects and in which the lifetime of the carriers is long.
摘要:
A semiconductor device comprising a semiconductor substrate and protective films formed thereon. The protective films comprise at least one silicon carbide film which may be pure or may contain particular impurities.
摘要:
A method of producing a semiconductor device, comprising the steps of forming a polycrystalline semiconductor layer on the exposed surface of a single crystalline semiconductor substrate, the substrate containing an impurity of one conductivity type and the polycrystalline layer an impurity of the other conductivity type, and heating the polycrystalline layer for the activation thereof at a temperature substantially preventing the impurity contained therein from being diffused into the substrate. The crystal of the substrate is kept free from lattice defect since the impurity is not diffused thereinto. In addition, this method prevents a short circuit from occurring between semiconductor regions of differing conductivity types which would otherwise be caused by deviation in the location of a mask used in the photoetching step.
摘要:
A method of manufacturing a semiconductor device which comprises the step of applying a silicon carbide film having a prescribed perforated pattern as a masking film selectively to etch a silicon dioxide film or diffuse an impurity into a substrate.
摘要:
A semiconductor device includes a semiconductor substrate and a silicon carbide film formed in direct contact with the surface of the semiconductor substrate. The silicon carbide film may have a proper purity or include at least one element selected from the group consisting of hydrogen, oxygen, nitrogen, helium, argon or chlorine.
摘要:
A method for manufacturing a semiconductor device is shown which includes a step of ion implanting an impurity into an impurity-region formation region of a semiconductor substrate. Before or after the ion implantation step, silicon ions are implanted in a dose of 1.times.10.sup.13 to 1.times.10.sup.15 /cm.sup.2 into the impurity-region formation region and then the silicon ions so implanted are subjected to an activation treatment to form an epitaxial grown protrusion on the surface of the substrate. The protrusion is used as an alignment mark in the subsequent mask alignment step for photolithography.
摘要翻译:示出了制造半导体器件的方法,其包括将杂质离子注入到半导体衬底的杂质区形成区域中的步骤。 在离子注入步骤之前或之后,将硅离子以1×10 13至1×10 15 / cm 2的剂量注入杂质区形成区域,然后将如此注入的硅离子进行活化处理,以在表面上形成外延生长突起 的基底。 在随后的用于光刻的掩模对准步骤中,该突起用作对准标记。