Abstract:
A dual solder layer for fluidic self assembly, an electrical component substrate, and method employing same is described. The dual solder layer comprises a layer of a self-assembly solder disposed on a layer of a base solder which is disposed on the solder pad of an electrical component substrate. The self-assembly solder has a liquidus temperature less than a first temperature and the base solder has a solidus temperature greater than the first temperature. The self-assembly solder liquefies at the first temperature during a fluidic self assembly method to cause electrical components to adhere to the substrate. After attachment, the substrate is removed from the bath and heated so that the base solder and self-assembly solder combine to form a composite alloy which forms the final electrical solder connection between the component and the solder pad on the substrate.
Abstract:
There is herein described a ceramic phosphor target which may be used in a laser-activated remote phosphor application. The target comprises a substantially flat ceramic phosphor converter comprised of a photoluminescent polycrystalline ceramic which is attached to a reflective metal substrate by a high thermal conductivity adhesive.
Abstract:
The present disclosure is directed to light converter assemblies with enhanced heat dissipation. A light converter assembly may comprise a confinement material applied to at least a first substrate and a phosphor material also deposited on the first substrate so as to be surrounded by the confinement material. The first substrate may be hermetically sealed to a second substrate using the confinement material so that the phosphor material is confined between the substrates and protected from atmospheric contamination. The substrates may comprise, for example, sapphire to allow for light beam transmission and heat conductance. Confinement materials that may be employed to seal the first substrate to the second substrate may include, for example, silicon or a metal (e.g., silver, copper, aluminum, etc.) The phosphor material may comprise, for example, at least one quantum dot material.
Abstract:
There is herein described a light source that homogenizes the light produced by a large area array of forward directed LEDs mounted on highly reflective substrate, while achieving a low-profile form factor and maintaining high efficacy. The LED light source employs a diffuser comprised of two diffusing layers: a low scattering diffusing layer bonded to the LEDs and a high scattering diffusing layer that is bonded to the low scattering diffusing layer. The LED light source achieves good diffuse illumination with a thin diffuser by making use of a light channeling effect between the highly reflective substrate and the high backscattering from the high scattering diffusing layer.
Abstract:
There is herein described a ceramic wavelength converter having a high reflectivity reflector. The ceramic wavelength converter is capable of converting a primary light into a secondary light and the reflector comprises a reflective metal layer and a dielectric buffer layer between the ceramic wavelength converter and the reflective metal layer. The buffer layer is non-absorbing with respect to the secondary light and has an index of refraction that is less than an index of refraction of the ceramic wavelength converter. Preferably the reflectivity of the reflector is at least 80%, more preferably at least 85% and even more preferably at least 95% with respect to the secondary light emitted by the converter.
Abstract:
Techniques for bonding a luminescent material to a thermally conductive substrate using a low temperature glass to provide a wavelength converter system are provided. A dichroic coating is deposited on a thermally conductive substrate. The dichroic coating includes alternating layers of a first material having a first refractive index and a second material having a second refractive index which is greater than the first refractive index. A buffer layer is deposited on the dichroic coating. A wavelength converter is bonded to the buffer layer by a layer of low temperature glass. In some embodiments, the wavelength converter includes a phosphor for converting a primary light from an excitation source into a secondary light.
Abstract:
There is herein described a method for forming a ceramic wavelength converter assembly which achieves a direct bonding of an alumina-based ceramic wavelength converter to an alumina-based ceramic substrate such as polycrystalline or sapphire. The method comprises applying a silica-containing layer between the converter and the substrate and then applying heat to bond the converter to the substrate to form the ceramic wavelength converter assembly. Because direct bonding is achieved, the ceramic wavelength converter may operate at much higher incident light powers than conventional silicone glue-bonded converters.
Abstract:
A dual solder layer for fluidic self assembly, an electrical component substrate, and method employing same is described. The dual solder layer comprises a layer of a self-assembly solder disposed on a layer of a base solder which is disposed on the solder pad of an electrical component substrate. The self-assembly solder has a liquidus temperature less than a first temperature and the base solder has a solidus temperature greater than the first temperature. The self-assembly solder liquefies at the first temperature during a fluidic self assembly method to cause electrical components to adhere to the substrate. After attachment, the substrate is removed from the bath and heated so that the base solder and self-assembly solder combine to form a composite alloy which forms the final electrical solder connection between the component and the solder pad on the substrate.