Abstract:
Some examples of the disclosure may include a package on package integrated package configuration including a first die located above the substrate in a first plane, a second die located above the first die in a second plane with a portion extending past the first die, a third die located above the first die in the second plane with a portion extending past the first die, a fourth die located above the second die and the third die in a third plane with a portion extending past the second die and the third die, and a fifth die located above the second die and the third die in the third plane with a portion extending past the second die and the third die.
Abstract:
The present disclosure provides semiconductor packages and methods for fabricating PoP semiconductor packages. The PoP semiconductor package may comprise a first semiconductor package, the first semiconductor package comprising an anodized metal lid structure comprising (i) a central cavity having a central cavity opening direction and (ii) at least one perimeter cavity having a perimeter cavity opening direction facing in an opposite direction of the central cavity opening direction, a first semiconductor device arranged in the central cavity of the anodized metal lid structure, a redistribution layer electrically coupled to the first semiconductor device, wherein a conductive trace formed in the redistribution layer is exposed to the at least one perimeter cavity, and solder material arranged in the at least one perimeter cavity, and a second semiconductor package, the second semiconductor package comprising at least one conductive post, wherein the at least one conductive post is electrically coupled to the solder material arranged in the at least one perimeter cavity.
Abstract:
A semiconductor package according to some examples of the disclosure may include a base with a first redistribution layer on one side, first and second side by side die attached to the base on an opposite side from the first redistribution layer, an interposer attached to active sides of the first and second die to provide an interconnection between the first and second die, a plurality of die vias extending from the first and second die to a second redistribution layer on a surface of the package opposite the first redistribution layer, and a plurality of package vias extending through the package between the first and second redistribution layers.
Abstract:
A method and apparatus for testing near field magnetic fields of electronic devices. The method comprises measuring a magnetic field using a loop antenna that is oriented in a first direction. The loop antenna is swept through a desired range of azimuth angles while measuring the magnetic field. Once the first direction testing is completed, the loop antenna is changed to a second orientation direction. The magnetic field is then measured in the second orientation direction and is swept through a desired range of orientation angles in the second direction. The apparatus provides a loop antenna connected to a coaxial probe, with the coaxial cable serving as the center conductor, and two outer conductors. An axle is mounted to the loop antenna and connected to a step motor. A servo motor is also provided for moving the arm assembly.
Abstract:
A semiconductor package according to some examples of the disclosure may include a substrate having a bridge embedded in the substrate, a first and second die coupled to the substrate, and a plurality of electrically conductive bridge interconnects in the substrate coupling the bridge to the first and second die. The plurality of electrically conductive bridge interconnects may have a first bridge contact layer directly coupled to the bridge, a first solder layer on the first bridge contact layer, a second bridge contact layer on the first solder layer, a second solder layer on the second bridge contact layer, and a die contact directly coupled to one of the first and second die where the plurality of electrically conductive bridge interconnects are embedded in the substrate.
Abstract:
A semiconductor device may include a first semiconductor die. A passivation layer supports the first semiconductor die. The passivation layer may include a first via having a barrier layer and a first redistribution layer (RDL) conductive interconnect coupled to the first via through the barrier layer. The first via may couple the first semiconductor die to the first RDL conductive interconnect.
Abstract:
Systems and methods for preventing warpage of a semiconductor substrate in a semiconductor package. A continuous or uninterrupted stiffener structure is designed with a recessed groove, such that passive components, such as, high density capacitors are housed within the recessed groove. The stiffener structure with the recessed groove is attached to the semiconductor substrate using anisotropic conductive film (ACF) or anisotropic conductive paste (ACP). The stiffener structure with the recessed groove surrounds one or more semiconductor devices that may be formed on the semiconductor substrate. The stiffener structure with the recessed groove does not extend beyond horizontal boundaries of the semiconductor substrate.
Abstract:
An integrated circuit (IC) package structure may include a substrate. The substrate may include a semiconductor bridge having a first surface directly on a surface of the substrate that faces a first semiconductor die and a second semiconductor die. The semiconductor bridge may be disposed within a cavity extending through a photo-sensitive layer on the surface of the substrate. The semiconductor bridge may have an exposed, second surface substantially flush with the photo-sensitive layer. The first semiconductor die and the second semiconductor die are supported by the substrate and coupled together through the semiconductor bridge.
Abstract:
A high density fan out package structure may include a contact layer. The contact layer includes a conductive interconnect layer having a first surface facing an active die and a second surface facing a redistribution layer. The high density fan out package structure has a barrier layer on the first surface of the conductive interconnect layer. The high density fan out package structure may also include the redistribution layer, which has conductive routing layers. The conductive routing layers may be configured to couple a first conductive interconnect to the conductive interconnect layer. The high density fan out package structure may further include a first via coupled to the barrier liner and configured to couple with a second conductive interconnect to the active die.
Abstract:
A package on package structure may be formed by fabricating or providing a bottom package having a substrate, at least one die on top of the substrate, and bonding pads on the top of the substrate. Next, a frame is formed on the bonding pads and connected to the bonding pads. Next, a package material is molded over the top of the substrate to encapsulate the frame, the die, and the pads or substantially encapsulates these components. Next, a portion of the molded package material is removed to expose at least a portion of the frame. The exposed frame portions are formed such that a desired fan in or fan out configuration is obtained. Next, a non-conductive layer is formed on the exposed frame. Last, a second package having a die or chip is connected to the exposed portion of the frame to form a package on package structure.