摘要:
A microelectronic package comprises a die (210) having attached thereto a first plurality of electrically conductive pads (211). The microelectronic package further comprises a first layer (220) and a second layer (130). The first layer has a first plurality of electrically conductive vias (121) electrically connected to one of the first plurality of electrically conductive pads. The second layer comprises a second plurality of electrically conductive pads (131) located around a perimeter (135) of the second layer and a plurality of electrically conductive traces (132) electrically connected to one of the first plurality of electrically conductive vias and to one of the second plurality of electrically conductive pads. The microelectronic package also comprises a plurality of wirebonds (240), each one of which is electrically connected to one of the second plurality of electrically conductive pads.
摘要:
A low-profile microelectronic package includes a die (110) (having a first surface (111) and a second surface (112)) and a package substrate (120). The substrate includes an electrically insulating layer (121) that forms a first side (126) of the substrate, an electrically conductive layer (122) connected to the die, and a protective layer (123) over the conductive layer that forms a second side (127) of the substrate. The first surface of the die is located at the first side of the substrate. The insulating layer has a plurality of pads (130) formed therein. The package further includes an array of interconnect structures (140) located at the first side of the substrate. Each interconnect structure in the array of interconnect structures has a first end (141) and a second end (142), and the first end is connected to one of the pads.
摘要:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
摘要:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, forming dielectric material surrounding the die, forming buildup layers in the dielectric material to form a coreless bumpless buildup package structure, and patterning the carrier material to form microchannel structures on the package structure.
摘要:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, forming dielectric material surrounding the die, forming buildup layers in the dielectric material to form a coreless bumpless buildup package structure, and patterning the carrier material to form microchannel structures on the package structure.
摘要:
A structure includes a hybrid substrate for supporting a semiconductive device that includes a bumpless build-up layer in which the semiconductive device is embedded and a laminated-core structure. The bumpless build-up layer and the laminated-core structure are rendered an integral apparatus by a reinforcement plating that connects to a plated through hole in the laminated-core structure and to a subsequent bond pad of the bumpless build-up layer structure.
摘要:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
摘要:
A microelectronic package includes a substrate (110), a die (120) embedded within the substrate, the die having a front side (121) and a back side (122) and a through-silicon-via (123) therein, build-up layers (130) built up over the front side of the die, and a power plane (140) in physical contact with the back side of the die. In another embodiment, the microelectronic package comprises a substrate (210), a first die (220) and a second die (260) embedded in the substrate and having a front side (221, 261) and a back side (222, 262) and a through-silicon-via (223, 263) therein, build-up layers (230) over the front sides of the first and second dies, and an electrically conductive structure (240) in physical contact with the back sides of the first and second dies.
摘要:
A low-profile microelectronic package includes a die (110) (having a first surface (111) and a second surface (112)) and a package substrate (120). The substrate includes an electrically insulating layer (121) that forms a first side (126) of the substrate, an electrically conductive layer (122) connected to the die, and a protective layer (123) over the conductive layer that forms a second side (127) of the substrate. The first surface of the die is located at the first side of the substrate. The insulating layer has a plurality of pads (130) formed therein. The package further includes an array of interconnect structures (140) located at the first side of the substrate. Each interconnect structure in the array of interconnect structures has a first end (141) and a second end (142), and the first end is connected to one of the pads.
摘要:
A structure includes a hybrid substrate for supporting a semiconductive device that includes a bumpless build-up layer in which the semiconductive device is embedded and a laminated-core structure. The bumpless build-up layer and the laminated-core structure are rendered an integral apparatus by a reinforcement plating that connects to a plated through hole in the laminated-core structure and to a subsequent bond pad of the bumpless build-up layer structure.