Abstract:
A light emitting device (LED) module, and manufacturing method of the same, which may be applied to various applications is provided. The LED module may be miniaturized by directly mounting an LED and a lens unit on a substrate, and price competitiveness may be enhanced by lowering a fraction defective and increasing yield of the LED module. In a method of manufacturing an LED module, an operation may be minimized and simplified by directly mounting LEDs and a plurality of lens units having various shapes, collectively forming the plurality of lens units, and by performing the operation on a wafer level. A heat radiation characteristic may be enhanced through use of a metallic material as a substrate and a bump.
Abstract:
There is provided an electronic device package including an electronic device including a first electrode and a second electrode disposed on a surface thereof, a package substrate having a first surface having the electronic device mounted thereon and a second surface opposed to the first surface. The package substrate includes a first electrode pattern and a second electrode pattern electrically connected to the first electrode and the second electrode on the first surface, respectively. The package substrate further includes at least one via hole disposed outside of a region for mounting the electronic device and an irregular portion disposed on the first surface to be adjacent to the via hole.
Abstract:
A method of manufacturing a semiconductor light emitting device package includes providing a wafer and forming, on the wafer, a semiconductor laminate comprising a plurality of light emitting devices. Electrodes are formed in respective light emitting device regions of the semiconductor laminate. A curable resin is applied to a surface of the semiconductor laminate on which the electrodes are formed. A support structure is formed for supporting the semiconductor laminate by curing the curable resin. Through holes are formed in the support structure to expose the electrodes therethrough. Connection electrodes are formed in the support structure to be connected to the exposed electrodes.
Abstract:
Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a substrate; a light emitting structure disposed on the substrate and having a stack structure in which a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer are stacked; a lens disposed on the light emitting structure; and a first terminal portion and a second terminal portion electrically connected to the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively. At least one of the first and second terminal portions extends from a top surface of the light emitting structure along respective side surfaces of the light emitting structure and the substrate.
Abstract:
A method of manufacturing a semiconductor light emitting device package includes providing a wafer and forming, on the wafer, a semiconductor laminate comprising a plurality of light emitting devices. Electrodes are formed in respective light emitting device regions of the semiconductor laminate. A curable resin is applied to a surface of the semiconductor laminate on which the electrodes are formed. A support structure is formed for supporting the semiconductor laminate by curing the curable resin. Through holes are formed in the support structure to expose the electrodes therethrough. Connection electrodes are formed in the support structure to be connected to the exposed electrodes.
Abstract:
A semiconductor light emitting device package is provided and includes a light emitting diode (LED) chip including a first electrode and a second electrode, the LED chip having a first surface on which the first electrode and the second electrode are disposed, and a second surface opposing the first surface; a dam structure disposed on the first surface, an outside edge of the dam structure being co-planar with an outside edge of the LED chip; and a wavelength conversion layer disposed on side surfaces of the LED chip, the second surface of the LED chip, and a surface of the dam structure, the wavelength conversion layer containing a wavelength conversion material.
Abstract:
A manufacturing method of a light emitting diode (LED) and a manufacturing method of an LED module are provided. The manufacturing method of the LED may include manufacturing a plurality of LED chips, manufacturing a phosphor pre-form including a plurality of mounting areas for mounting the plurality of LED chips, applying an adhesive inside the phosphor pre-form, mounting each of the plurality of LED chips in each of the plurality of mounting areas, and cutting the phosphor pre-form to which the plurality of LED chips are mounted, into units including individual LED chips.
Abstract:
A flip chip light emitting device (LED) package and a manufacturing method thereof are provided. The flip chip LED package includes a package substrate including a cavity that exposes a circuit pattern, and a chip mounting portion disposed on a bottom surface of the cavity; a solder layer disposed on the circuit pattern; a bonding tape layer disposed on the chip mounting portion; and an LED including a bonding object region and a plurality of electrode pads disposed on one surface, being mounted on the package substrate such that the plurality of electrode pads are bonded to the solder layer and the bonding object region is bonded to the bonding tape layer
Abstract:
A bump manufacturing method may be provided. The bump manufacturing method may include forming a bump on an electrode pad included in a semiconductor device, and controlling a shape of the bump by reflowing the bump formed on the semiconductor device under an oxygen atmosphere.