Abstract:
An optical device and a light source module including the same are provided. The optical device includes a first surface including an incident portion through which light that is emitted from a light source is incident, and a second surface through which the light incident through the incident portion is emitted. The incident portion may include a curved surface that is recessed toward the second surface, and a pointed vertex to which the curved surface is recessed, the pointed vertex being in a central portion of the optical device, and the central portion being through which an optical axis of the optical device passes.
Abstract:
A light emitting device package is provided. The package includes a light emitting device including a substrate, and a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer stacked on the substrate; and a wavelength conversion film disposed in a path of light emitted by the light emitting device and having phosphor layers stacked on each other. A portion of the phosphor layers includes phosphor structures including a wavelength conversion material receiving light emitted from the light emitting device and converting a wavelength thereof and a binding resin binding the wavelength conversion material, and a transparent resin filling spaces between the phosphor structures.
Abstract:
An apparatus for manufacturing an light emitting diode (LED) package, includes: a heating unit heating an LED package array in a lead frame state in which a plurality of LED packages are installed to be set in an array on a lead frame; a testing unit testing an operational state of each of the LED packages in the LED package array by applying a voltage or a current to the LED package array heated by the heating unit; and a cutting unit cutting only an LED package determined to be a functional product or an LED package determined to be a defective product from the lead frame to remove the same according to the testing results of the testing unit.
Abstract:
An apparatus for measurement of a three-dimensional (3D) shape includes a lens unit transmitting slit beams to a plurality of measurement objects, a light source unit irradiating the plurality of slit beams to the lens unit at different angles, an imaging unit obtaining images of the plurality of measurement objects formed by the slit beams irradiated on the plurality of measurement objects, and a calculation processing unit generating information regarding a 3D shape of the plurality of measurement objects from the images obtained by the imaging unit.
Abstract:
A light source module includes a light source, a light guide plate on the light source and including at least one recess portion in an upper surface thereof, and a filter sheet on an upper surface of the light guide plate and having a pattern. The pattern may be configured to partially reflect and partially transmit light emitted from the light source through the light guide plate.
Abstract:
A are provided a light source module. The light source module including a light emitting device configured to emit light in a light emitting direction; and an optical device including a first surface disposed over the light emitting device and having a groove recessed in the light emitting direction in a central portion through which an optical axis of the optical device passes, and a second surface disposed opposite to the first surface and configured to refract light incident through the groove to be emitted to the outside. The optical device includes a plurality of ridges disposed on the second surface and periodically arranged in a direction from the optical axis to an edge of the optical device connected to the first surface.
Abstract:
A method for inspecting a light source module for defects includes preparing a board on which a light emitting device and a lens covering the light emitting device are installed. A current is applied to the light emitting device to turn on the light emitting device. The lens is imaged with the light emitting device turned on. A central symmetry denoting a symmetry of light emission distribution from the center of the lens is calculated based on the obtained image, and the calculated central symmetry is compared with a reference value to determine whether unsymmetrical light emission distribution has occurred. Various other methods and apparatuses for inspecting light source modules are additionally provided.
Abstract:
There is provided a slit valve unit including: a body disposed on an outer side of a process chamber and having an entrance connected to an opening of the process chamber; a slit valve provided in an internal space of the body and selectively opening and closing the entrance; a plurality of packing members provided along the circumference of the entrance on an inner side of the body and tightly attached to the slit valve when the slit valve shields the entrance; and a connection pipe having one end exposed between the plurality of packing members on the inner side of the body so as to be connected to an airtight space formed among the plurality of packing members, the body, and the slit valve, and the other end exposed to the outer side of the body, the connection pipe penetrating the body.
Abstract:
An optical device and a light source module including the same are provided. The optical device includes a first surface having an incident portion; a second surface emitting light incident through the incident portion outwardly; a support portion protruding from the first surface; and a blocking portion surrounding an outer portion of the support portion, the blocking portion being stepped with respect to the first surface.
Abstract:
There is provided a slit valve unit including: a body disposed on an outer side of a process chamber and having an entrance connected to an opening of the process chamber; a slit valve provided in an internal space of the body and selectively opening and closing the entrance; a plurality of packing members provided along the circumference of the entrance on an inner side of the body and tightly attached to the slit valve when the slit valve shields the entrance; and a connection pipe having one end exposed between the plurality of packing members on the inner side of the body so as to be connected to an airtight space formed among the plurality of packing members, the body, and the slit valve, and the other end exposed to the outer side of the body, the connection pipe penetrating the body.