Abstract:
A photomask assembly may be formed such that stress relief trenches are formed in a pellicle frame of the photomask assembly. The stress relief trenches may reduce or prevent damage to a pellicle that may otherwise result from deformation of the pellicle. The stress relief trenches may be formed in areas of the pellicle frame to allow the pellicle frame to deform with the pellicle, thereby reducing the amount damage to the pellicle caused by the pellicle frame.
Abstract:
The present disclosure provides a power clamp device. The power clamp device includes a delay element, a first transistor, a second transistor, and a gate control circuit. The delay element has an input terminal and an output terminal. The first transistor has a gate electrically connected to the output terminal of the delay element. The second transistor has a source electrically connected to a drain of the first transistor. The gate control circuit has a first terminal electrically connected to the input terminal of the delay element, a second terminal electrically connected to the output terminal of the delay element, and a third terminal electrically connected to a gate of the second transistor.
Abstract:
A photomask assembly may be formed such that stress relief trenches are formed in a pellicle frame of the photomask assembly. The stress relief trenches may reduce or prevent damage to a pellicle that may otherwise result from deformation of the pellicle. The stress relief trenches may be formed in areas of the pellicle frame to allow the pellicle frame to deform with the pellicle, thereby reducing the amount damage to the pellicle caused by the pellicle frame.
Abstract:
The present disclosure provides electrostatic discharge circuits and structures and methods for operating the electrostatic discharge circuits and structures. A circuit includes a first transistor and a second transistor. The first transistor includes a drain, a source, a gate, and a bulk. The drain of the first transistor is connected to a first terminal. The source of the first transistor is connected to receive a first voltage. The gate and the bulk of the first transistor is connected to receive a second voltage. The second transistor includes a drain, a source, a gate, and a bulk. The source, the gate, and the bulk of the second transistor is connected to receive the second voltage. The drain of the second transistor is connected to the first terminal. In response to the terminal reaching a trigger voltage, the first transistor is configured to be turned on.
Abstract:
A semiconductor device includes a through-substrate via extending from a frontside to a backside of a semiconductor substrate. The through-substrate via includes a concave or a convex portion adjacent to the backside of the semiconductor substrate. An isolation film is formed on the backside of the semiconductor substrate. A conductive layer includes a first portion formed on the concave or convex portion of the through substrate via and a second portion formed on the isolation film. A passivation layer partially covers the conductive layer.
Abstract:
Integrated circuit packages and methods of forming the same are provided. One or more redistribution layers are formed on a carrier. First connectors are formed on a first side of the RDLs. Dies are bonded to the first side of the RDLs using the first connectors. An encapsulant is formed on the first side of the RDLs around the dies. The carrier is de-bonded from the overlaying structure and second connectors are formed on a second side of the RDLs. The resulting structure in diced to form individual packages.
Abstract:
A device includes a first side interconnect structure over a first side of a substrate, wherein active circuits are in the substrate and adjacent to the first side of the substrate, a dielectric layer over a second side of the substrate, a pad embedded in the dielectric layer, the pad comprising an upper portion and a bottom portion formed of two different materials and a passivation layer over the dielectric layer.
Abstract:
An apparatus comprising a substrate with multiple electronic devices. An interconnect structure formed on a first side of the substrate interconnects the electronic devices. Dummy TSVs each extend through the substrate and form an alignment mark on a second side of the substrate. Functional TSVs each extend through the substrate and electrically connect to the electronic devices. A redistribution layer (RDL) formed on the second side of the substrate interconnects ones of the dummy TSVs with ones of the functional TSVs. Step heights of the RDL over the functional TSVs are less than a predetermined value, whereas step heights of the RDL over the dummy TSVs are greater than the predetermined value.
Abstract:
A work piece includes a copper bump having a top surface and sidewalls. A protection layer is formed on the sidewalls, and not on the top surface, of the copper bump. The protection layer includes a compound of copper and a polymer, and is a dielectric layer.
Abstract:
Methods of making and an integrated circuit device. An embodiment method includes patterning a first polymer layer disposed over a first copper seed layer, electroplating a through polymer via in the first polymer layer using the first copper seed layer, a via end surface offset from a first polymer layer surface, forming a second polymer layer over the first polymer layer, the second polymer layer patterned to expose the via end surface, and electroplating an interconnect in the second polymer layer to cap the via end surface using a second copper seed layer.