摘要:
A semiconductor component includes a base die and a secondary die stacked on and bonded to the base die. The base die includes conductive vias which form an internal signal transmission system for the component, and allow the circuit side of the secondary die to be bonded to the back side of the base die. The component also includes an array of terminal contacts on the circuit side of the base die in electrical communication with the conductive vias. The component can also include an encapsulant on the back side of the base die, which substantially encapsulates the secondary die, and a polymer layer on the circuit side of the base die which functions as a protective layer, a rigidifying member and a stencil for forming the terminal contacts. A method for fabricating the component includes the step of bonding singulated secondary dice to base dice on a base wafer, or bonding a secondary wafer to the base wafer, or bonding singulated secondary dice to singulated base dice.
摘要:
A semiconductor component includes a base die and a secondary die stacked on and bonded to the base die. The base die includes conductive vias which form an internal signal transmission system for the component, and allow the circuit side of the secondary die to be bonded to the back side of the base die. The component also includes an array of terminal contacts on the circuit side of the base die in electrical communication with the conductive vias. The component can also include an encapsulant on the back side of the base die, which substantially encapsulates the secondary die, and a polymer layer on the circuit side of the base die which functions as a protective layer, a rigidifying member and a stencil for forming the terminal contacts. A method for fabricating the component includes the step of bonding singulated secondary dice to base dice on a base wafer, or bonding a secondary wafer to the base wafer, or bonding singulated secondary dice to singulated base dice.
摘要:
A semiconductor component includes a base die and a secondary die stacked on and bonded to the base die. The base die includes conductive vias which form an internal signal transmission system for the component, and allow the circuit side of the secondary die to be bonded to the back side of the base die. The component also includes an array of terminal contacts on the circuit side of the base die in electrical communication with the conductive vias. The component can also include an encapsulant on the back side of the base die, which substantially encapsulates the secondary die, and a polymer layer on the circuit side of the base die which functions as a protective layer, a rigidifying member and a stencil for forming the terminal contacts. A method for fabricating the component includes the step of bonding singulated secondary dice to base dice on a base wafer, or bonding a secondary wafer to the base wafer, or bonding singulated secondary dice to singulated base dice.
摘要:
A method for fabricating a semiconductor component includes the steps of providing a substrate having a contact on a circuit side thereof, forming an opening from a backside of the substrate to the contact, forming a conductive via in the opening in electrical contact with a surface of the contact, and forming a second contact on the back side in electrical communication with the conductive via. The method can also include the steps of thinning the substrate from the backside, forming insulating layers on the circuit side and the backside, and forming a conductor and terminal contact on the circuit side in electrical communication with the conductive via. A semiconductor component includes the contact on the circuit side, the conductive via in electrical contact with the contact, and the second contact on the backside in electrical communication with the conductive via. The semiconductor component can also include the insulating layers, the conductor and the terminal contact.
摘要:
A compliant contact pin contactor card method for making is provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.
摘要:
Microelectronic imagers and methods for packaging microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging unit can include a microelectronic die, an image sensor, an integrated circuit electrically coupled to the image sensor, and a bond-pad electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the die and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad with conductive fill material at least partially disposed in the passage. An electrically conductive support member is carried by and projects from the bond-pad. A cover over the image sensor is coupled to the support member.
摘要:
A compliant contact pin assembly and a contactor card system are provided. The compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.
摘要:
Microelectronic imagers and methods for packaging microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging unit can include a microelectronic die, an image sensor, an integrated circuit electrically coupled to the image sensor, and a bond-pad electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the die and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad with conductive fill material at least partially disposed in the passage. An electrically conductive support member is carried by and projects from the bond-pad. A cover over the image sensor is coupled to the support member.
摘要:
A compliant contact pin assembly, a contactor card, a testing system and methods for making and testing are provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material and in another embodiment by compliantly flexible portions of the substrate.
摘要:
A compliant contact pin assembly and a contactor card and methods for testing therewith are provided. The compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.