Abstract:
Interconnection elements (550) for electronic components (556), exhibiting desirable mechanical characteristics (such as resiliency), for making pressure contact(s) are formed by shaping a ribbon-like core element (552) of a soft material (such as gold or soft copper) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped core element with a hard material (558) such as nickel and it alloys, to impart a desired spring (resilient) characteristic to the resulting composite interconnection element (550). A final overcoat of a material (220) having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element (200). The resulting interconnection elements (500, 550) may be mounted to a variety of electronic components.
Abstract:
Resilient contact structures (430) are mounted directly to bond pads (410) on semiconductor dies (402a, 402b), prior to the dies (402a, 402b) being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies (402a, 402b) to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies (702, 704) with a circuit board (710) or the like having a plurality of terminals (712) disposed on a surface thereof. Subsequently, the semiconductor dies (402a, 402b) may be singulated from the semiconductor wafer, whereupon the same resilient contact structures (430) can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements (430) of the present invention as the resilient contact structures, burn-in (792) can be performed at temperatures of at least 150 °C, and can be completed in less than 60 minutes.
Abstract:
Probe array structures and methods of making probe array structures are disclosed. A plurality of electrically conductive elongate contact structures disposed on a first substrate can be provided. The contact structures can then be partially encased in a securing material such that ends of the contact structures extend from a surface of the securing material. The exposed portions of the contact structures can then be captured in a second substrate.
Abstract:
An exemplary die carrier is disclosed. In some embodiments, the die carrier can hold a plurality of singulated dies while the dies are tested. The dies can be arranged on the carrier in a pattern that facilities testing the dies. The carrier can be configured to allow interchangeable interfaces to different testers to be attached to and detached from the carrier. The carrier can also be configured as a shipping container for the dies.
Abstract:
The probe card assembly (500) includes a probe card (502), and a space transformer (506) having resilient contact structures (524) mounted to and extending from terminals (522) on its surface. An interposer (504) is disposed between the space transformer and the probe card. The space transformer and interposer are stacked on the probe card and the resilient contact structures can be arranged to optimise probing of entire wafer.
Abstract:
Contact tip structures are fabricated on sacrificial substrates for subsequent joining to interconnection elements including composite interconnection elements, monolithic interconnection elements, tungsten needles of probe cards, contact bumps of membrane probes, and the like. The spatial relationship between the tip structures can lithographically be defined to very close tolerances. The metallurgy of the tip structures is independent of that of the interconnection element to which they are attached, by brazing, plating or the like. The contact tip structures are readily provided with topological (small, precise, projecting, non-planar) contact features, such as in the form of truncated pyramids, to optimize electrical pressure connections subsequently being made to terminals of electronic components. Elongate contact tip structures, adapted in use to function as spring contact elements without the necessity of being joined to resilient contact elements are described. Generally, the invention is directed to making (pre-fabricating) relatively 'perfect' contact tip structures ('tips') and joining them to relatively 'imperfect' interconnection elements to improve the overall capabilities of resulting 'tipped' interconnection elements.
Abstract:
The probe card assembly (500) includes a probe card (502), and a space transformer (506) having resilient contact structures (524) mounted to and extending from terminals (522) on its surface. An interposer (504) is disposed between the space transformer and the probe card. The space transformer and interposer are stacked on the probe card and the resilient contact structures can be arranged to optimise probing of entire wafer.
Abstract:
Microelectronic contact structures (260, 360, 460) are lithographically defined and fabricated by applying a masking layer (220, 320, 420) on a surface of a substrate (202, 302, 402) such as an electronic component, creating an opening (222, 322, 422) in the masking layer, depositing a conductive trace of a seed layer (250, 350, 450) onto the masking layer and into the openings, and building up a mass of conductive material on the conductive trace. The sidewalls of the opening can be sloped (tapered). The conductive trace can be patterned by depositing material through a stencil or shadow mask (240, 340, 440). A protruding feature (230, 430) may be disposed on the masking layer so that a tip end (264, 364, 464) of the contact structure acquires a topography. All of these elements can be constructed as a group to form a plurality of precisely positioned resilient contact structures.
Abstract:
A plurality of contact elements, such as contact bumps or free-standing spring contacts (710) including both monolithic and composite interconnection elements, are mounted to relatively small tile substrates (702) which, in turn, are mounted and connected to a relatively large electronic component substrate (706), thereby populating the electronic component with a plurality of contact elements while avoiding the necessity of yielding the contact elements directly upon the electronic component. The relatively large electronic component is suitably a space transformer component of a probe card assembly. In this manner, pressure connections can be made to an entire semiconductor wafer, at once, to provide for wafer-level bum-in, and the like. Solder balls, z-axis conductive adhesive, or compliant connections are suitably employed for making electrical connections between the tile substrates and the electronic component. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the tiles can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described. Techniques for maintaining a prescribed x-y and z-axis alignment of the tiles to the relatively large substrate are disclosed.
Abstract:
Interconnection elements (752) and/or tip structures (770) for interconnection elements (752) may first be fabricated upon sacrificial substrates (702) for subsequent mounting to electronic components (784). In this manner, the electronic components (784) are not 'at risk' during the fabrication process. The sacrificial substrate (702) establishes a predetermined spatial relationship between the interconnection elements (752) which may be composite interconnection elements (752) having a relatively soft elongate element (752) as a core and a relatively hard (springy material) overcoat (754). Interconnection elements (752) may be fabricated upon tip structures (770), or may first be mounted to the electronic component (784) and the tip structures (770) joined to the free-ends of the interconnection elements (752). Tip structures (770) formed as cantilever beams are described.