摘要:
Provided are a top-emitting nitride based light emitting device having an n-type clad layer, an active layer and a p-type clad layer sequentially stacked thereon, comprising an interface modification layer formed on the p-type clad layer and a transparent conductive thin film layer made up of a transparent conductive material formed on the interface modification layer; and a process for preparing the same. In accordance with the top-emitting nitride-based light emitting device of the present invention and a process for preparing the same, there are provided advantages such as improved ohmic contact with the p-type clad layer, leading to increased wire bonding efficiency and yield upon packaging the light emitting device, capability to improve luminous efficiency and life span of the device due to low specific contact resistance and excellent current-voltage properties.
摘要:
Example embodiments provide a light emitting diode (LED) having improved polarization characteristics. The LED may include wire grid polarizers on and below a light emitting unit. The wire grid polarizers may be arranged at an angle to each other. Thus, because the LED may emit a light beam in a given polarization direction, an expensive component, e.g., a dual brightness enhanced film (DBEF), is not required. Thus, manufacturing costs of a backlight unit including the LED and a display apparatus including the backlight unit may be reduced.
摘要:
Provided is a method of manufacturing a light emitting device from a large-area bonding wafer by using a wafer bonding method using. The method may include forming a plurality of semiconductor layers, each having an active region for emitting light, on a plurality of growth substrates. The method may also include arranging the plurality of growth substrates on which the semiconductor layers are formed on one bonding substrate and simultaneously processing each of the semiconductor layers formed on each of the growth substrates through subsequent processes. The bonding wafer may be formed of a material that reduces or prevents bending or warping due to a difference of thermal expansion coefficients between a wafer material, such as sapphire, and a bonding wafer. According to the above method, because a plurality of wafers may be processed by one process, mass production of LEDs may be possible which may reduce manufacturing costs.
摘要:
Provided is a method of manufacturing a nitride-based semiconductor light-emitting device having increased efficiency and increased output properties. The method may include forming a sacrificial layer having a wet etching property on a substrate, forming a protective layer on the sacrificial layer, protecting the sacrificial layer in a reaction gas atmosphere for crystal growth, and facilitating epitaxial growth of a semiconductor layer to be formed on the protective layer, forming a semiconductor device including an n-type semiconductor layer, an active layer, and a p-type semiconductor layer on the protective layer, and removing the substrate from the semiconductor device by wet etching the sacrificial layer.
摘要:
Provided are a flip-chip nitride-based light emitting device having an n-type clad layer, an active layer and a p-type clad layer sequentially stacked thereon, comprising a reflective layer formed on the p-type clad layer and at least one transparent conductive thin film layer made up of transparent conductive materials capable of inhibiting diffusion of materials constituting the reflective layer, interposed between the p-type clad layer and reflective layer; and a process for preparing the same. In accordance with the flip-chip nitride-based light emitting device of the present invention and a process for preparing the same, there are provided advantages such as improved ohmic contact properties with the p-type clad layer, leading to increased wire bonding efficiency and yield upon packaging the light emitting device, capability to improve luminous efficiency and life span of the device due to low specific contact resistance and excellent current-voltage properties.
摘要:
Provided is a nitride-based semiconductor light emitting device having increased efficiency and power characteristics and method of manufacturing the same. The method may include forming a sacrificial layer on a substrate, forming a passivation layer on the sacrificial layer, forming a plurality of masking dots of a metal nitride on the passivation layer, laterally epitaxially growing a nitride-based semiconductor layer on the passivation layer using the masking dots as masks, forming a semiconductor device on the nitride-based semiconductor layer, and wet etching the sacrificial layer to separate and/or remove the substrate from the semiconductor device.
摘要:
Provided are a multiple reflection layer electrode, a compound semiconductor light emitting device having the same and methods of fabricating the same. The multiple reflection layer electrode may include a reflection layer on a p-type semiconductor layer, an APL (agglomeration protecting layer) on the reflection layer so as to prevent or retard agglomeration of the reflection layer, and a diffusion barrier between the reflection layer and the APL so as to retard diffusion of the APL.
摘要:
Provided are a nitride-based light emitting device and a method of manufacturing the same. The nitride-based light emitting device has a structure in which at least an n-cladding layer, an active layer, and a p-cladding layer are sequentially formed on a substrate. The light emitting device further includes an ohmic contact layer composed of a zinc (Zn)-containing oxide containing a p-type dopant formed on the p-cladding layer. The method of manufacturing the nitride-based light emitting device includes forming an ohmic contact layer composed of Zn-containing oxide containing a p-type dopant on the p-cladding layer, the ohmic contact layer being made and annealing the resultant structure. The nitride-based light emitting device and manufacturing method provide excellent I–V characteristics by improving ohmic contact with a p-cladding layer while significantly enhancing light emission efficiency of the device due to high light transmittance of a transparent electrode.
摘要:
A top-emitting nitride-based light-emitting device and a method of manufacturing the same. The top-emitting nitride-based light-emitting device having a substrate, an n-cladding layer, an active layer, and a p-cladding layer sequentially formed includes: a grid cell layer formed on the p-cladding layer by a grid array of separated cells formed from a conducting material with a width of less than 30 micrometers to improve electrical and optical characteristics; a surface protective layer that is formed on the p-cladding layer and covers at least regions between the cells to protect a surface of the p-cladding layer; and a transparent conducting layer formed on the surface protective layer and the grid cell layer using a transparent conducting material. The light-emitting device and the method of manufacturing the same provide an improved ohmic contact to the p-cladding layer, excellent I-V characteristics, and high light transmittance, thus increasing luminous efficiency of the device.
摘要:
Provided are a multiple reflection layer electrode, a compound semiconductor light emitting device having the same and methods of fabricating the same. The multiple reflection layer electrode may include a reflection layer on a p-type semiconductor layer, an APL (agglomeration protecting layer) on the reflection layer so as to prevent or retard agglomeration of the reflection layer, and a diffusion barrier between the reflection layer and the APL so as to retard diffusion of the APL.