摘要:
A light emitting device includes a heterojunction having a p-type layer and an n-type layer. The n-electrode is electrically connected to the n-type layer while the p-electrode is electrically connected to the p-type layer. The p and n-electrodes are positioned to form a region having uniform light intensity.
摘要:
Light emitting devices having a vertical optical path, e.g. a vertical cavity surface emitting laser or a resonant cavity light emitting or detecting device, having high quality mirrors may be achieved using wafer bonding or metallic soldering techniques. The light emitting region interposes one or two reflector stacks containing dielectric distributed Bragg reflectors (DBRs). The dielectric DBRs may be deposited or attached to the light emitting device. A host substrate of GaP, GaAs, InP, or Si is attached to one of the dielectric DBRs. Electrical contacts are added to the light emitting device.
摘要:
A device includes a submount, and a semiconductor light emitting device mounted on first and second conductive regions on a first side of the submount in a flip chip architecture configuration. The submount has third and fourth conductive regions on a second side of the submount. The third and fourth conductive regions may be used to solder the submount to structure such as a board, without the use of wire bonds. The first and third conductive regions are electrically connected by a first conductive layer and the second and fourth conductive regions are electrically connected by a second conductive layer. The first and second conductive layers may be disposed on the outside of the submount or within the submount.
摘要:
A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
摘要:
A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
摘要:
A light-emitting semiconductor device includes a stack of layers including an active region. The active region includes a semiconductor selected from the group consisting of III-Phosphides, III-Arsenides, and alloys thereof. A superstrate substantially transparent to light emitted by the active region is disposed on a first side of the stack. First and second electrical contacts electrically coupled to apply a voltage across the active region are disposed on a second side of the stack opposite to the first side. In some embodiments, a larger fraction of light emitted by the active region exits the stack through the first side than through the second side. Consequently, the light-emitting semiconductor device may be advantageously mounted as a flip chip to a submount, for example.
摘要:
A light emitting device includes a first semiconductor layer of a first conductivity type, an active region, and a second semiconductor layer of a second conductivity type. First and second contacts are connected to the first and second semiconductor layers. In some embodiments at least one of the first and second contacts has a thickness greater than 3.5 microns. In some embodiments, a first heat extraction layer is connected to one of the first and second contacts. In some embodiments, one of the first and second contacts is connected to a submount by a solder interconnect having a length greater than a width. In some embodiments, an underfill is disposed between a submount and one of the first and second interconnects.
摘要:
A lamp has LED sources that are placed about a lamp axis in an axial arrangement. The lamp includes a post with post facets where the LED sources are mounted. The lamp includes a segmented reflector for guiding light from the LED sources. The segmented reflector includes reflective segments each of which is illuminated primarily by light from one of the post facets (e.g., one of the LED sources on the post facet). The LED sources may be made up of one or more LED dies. The LED dies may include optic-on-chip lenses to direct the light from each post facet to a corresponding reflective segment. The LED dies may be of different sizes and colors chosen to generate a particular far-field pattern.
摘要:
A semiconductor light emitting device including a light emitting layer disposed between an n-type region and a p-type region and contacts electrically connected to the n-type region and the p-type region is connected to a mount. A metal layer arbitrarily patterned to cover at least 20% of the area of the semiconductor light emitting device is plated on either a metal layer formed on the mount or a metal layer formed on one of the contacts. The plated metal layer may replace other known interconnecting techniques such as stud bumps. The semiconductor light emitting device is physically connected to the mount by causing interdiffusion between the contact surfaces of the metal layers. In some embodiments, a layer of solder is formed over the plated metal layer, and then the semiconductor light emitting device is physically connected to the mount by heating the solder.
摘要:
A semiconductor light emitting device including a light emitting layer disposed between an n-type region and a p-type region and contacts electrically connected to the n-type region and the p-type region is connected to a mount. A metal layer arbitrarily patterned to cover at least 20% of the area of the semiconductor light emitting device is plated on either a metal layer formed on the mount or a metal layer formed on one of the contacts. The plated metal layer may replace other known interconnecting techniques such as stud bumps. The semiconductor light emitting device is physically connected to the mount by causing interdiffusion between the contact surfaces of the metal layers. In some embodiments, a layer of solder is formed over the plated metal layer, and then the semiconductor light emitting device is physically connected to the mount by heating the solder.