Abstract:
Various embodiments include methods of forming interconnect structures, and the structures formed by such methods. In one embodiment, an interconnect structure can include: a photosensitive polyimide (PSPI) layer including a pedestal portion; a controlled collapse chip connection (C4) bump overlying the pedestal portion of the PSPI layer; a solder overlying the C4 bump and contacting a side of the C4 bump; and an underfill layer abutting the pedestal portion of the PSPI and the C4 bump, wherein the underfill layer and the solder form a first interface separated from the PSPI pedestal.
Abstract:
Methods and apparatus for joining a chip with a substrate. The chip is moved by with a pick-and-place machine from a first location to a second location proximate to the substrate over a first time. In response to moving the chip in a motion path from the first location to the second location, a plurality of solder bumps carried on the chip are liquefied over a second time that is less than the first time. While the solder bumps are liquefied, the chip is placed by the pick-and-place machine onto the substrate.
Abstract:
Methods and apparatus for joining a chip with a substrate. The chip is moved by with a pick-and-place machine from a first location to a second location proximate to the substrate over a first time. In response to moving the chip in a motion path from the first location to the second location, a plurality of solder bumps carried on the chip are liquefied over a second time that is less than the first time. While the solder bumps are liquefied, the chip is placed by the pick-and-place machine onto the substrate.
Abstract:
Aspects of the present invention relate to a controlled metal extrusion opening in a semiconductor structure. Various embodiments include a semiconductor structure. The structure includes an aluminum layer. The aluminum layer includes an aluminum island within the aluminum layer, and a lateral extrusion receiving opening extending through the aluminum layer adjacent the aluminum island. The opening includes a lateral extrusion of the aluminum layer of the semiconductor structure. Additional embodiments include a method of forming a semiconductor structure. The method can include forming an aluminum layer over a titanium layer. The aluminum layer includes an aluminum island within the aluminum layer. The method can also include forming an opening extending through the aluminum layer adjacent the aluminum island within the aluminum layer. The opening includes a lateral extrusion of the aluminum layer of the semiconductor layer.
Abstract:
“Thick line dies” that, during manufacture, avoid locating an upstanding edge of a photoresist layer (for example, the edge of a dry film photoresist layer) on top of a “discontinuity.” In this way solder does not flow into the mechanical interface between the photoresist layer and the layer under the photoresist layer in the vicinity of an upstanding edge of the photoresist layer.
Abstract:
Methods and apparatus for joining a chip with a substrate. The chip is moved by with a pick-and-place machine from a first location to a second location proximate to the substrate over a first time. In response to moving the chip in a motion path from the first location to the second location, a plurality of solder bumps carried on the chip are liquefied over a second time that is less than the first time. While the solder bumps are liquefied, the chip is placed by the pick-and-place machine onto the substrate.
Abstract:
An apparatus and method for leak detection of coolant gas from a chuck. The apparatus includes a chuck having a top surface and configured to clamp a substrate to the top surface, the chuck having one or more recessed regions in the top surface, the recessed regions configured to allow a cooling gas to contact a backside of the substrate; a cooling gas inlet and a cooling gas outlet connected to the one or more recessed regions; a first measurement device connected to the cooling gas inlet and configured to measure a first amount of cooling gas entering the cooling gas inlet and a second measurement device connected to the cooling gas outlet and configured to measure a second amount of cooling gas exiting from the cooling gas outlet; and a controller configured to determine a difference between the first amount of cooling gas and the second amount of cooling gas.
Abstract:
“Thick line dies” that, during manufacture, avoid locating an upstanding edge of a photoresist layer (for example, the edge of a dry film photoresist layer) on top of a “discontinuity.” In this way solder does not flow into the mechanical interface between the photoresist layer and the layer under the photoresist layer in the vicinity of an upstanding edge of the photoresist layer.
Abstract:
Embodiments of the present disclosure provide an integrated circuit (IC) structure with a recessed solder bump area, and methods of forming the same. An IC structure according to embodiments of the present disclosure can include: a semiconductor material, wherein an upper surface of the semiconductor material includes a non-recessed area and a recessed area laterally separated from each other, the recessed area of the upper surface being shaped to receive a solder bump therein; at least one first through-semiconductor via (TSV) positioned within the semiconductor material and including an upper surface protruding from the recessed area of the semiconductor material; and a metal layer formed over the recessed area and electrically connected to the at least one first TSV.
Abstract:
The present disclosure generally provides for integrated circuit (IC) structures with through-semiconductor vias (TSV). In an embodiment, an IC structure may include a through-semiconductor via (TSV) embedded in a substrate, the TSV having a cap; a dielectric layer adjacent to the substrate; a metal layer adjacent to the dielectric layer; a plurality of vias each embedded within the dielectric layer and coupling the metal layer to the cap of the TSV at respective contact points, wherein the plurality of vias is configured to create a substantially uniform current density throughout the TSV.