Abstract:
A light source is disclosed. In an embodiment a light source includes at least one first semiconductor emitter for generating first light, at least one second semiconductor emitter for generating second light, the second light having a different color than the first light, a light mixing body configured to produce a mixed light from the first and second lights and a detector on the light mixing body, the detector configured to determine a color locus of the mixed light, wherein the first and second semiconductor emitters are arranged along a line and have different distances from the detector, wherein the light mixing body is arranged on side surfaces of the first and second semiconductor emitters and in projection onto the side surfaces at least partially covers each of the side surfaces, so that the detector receives light from each of the first and second semiconductor emitters through the light mixing body.
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
Abstract:
The invention relates to an optoelectronic element comprising a semiconductor chip (12) that emits a blue-green light (4) during operation and has at least one light passage surface (12a) through which the blue-green light (4) emitted during operation passes and comprising a conversion element (3) which comprises fluorescent particles (31), in particular fluorescent particles of only one type, and which is arranged on the light passage surface (12a) at least in some areas. The fluorescent particles (31) at least partly convert the blue-green light (4) into a red light (5), and the optoelectronic element emits a white mixed light (6) which contains non-converted components of the blue-green light (4) and components of the red light (5).
Abstract:
A method of operating a semiconductor light source, wherein the semiconductor light source includes at least one first light source that generates blue light; at least one second light source that generates bluish-white light; at least one third light source that produces greenish-white light; at least one fourth light source that generates red light, wherein no further light sources are present, the light sources can be controlled independently of one another, the light sources are operated in a continuous wave mode and not by pulse width modulation, and the semiconductor light source is operated such that all in all white mixed light having a tunable correlated color temperature is generated, and each of the light sources is operated exclusively with at least 5% of an intended maximum current in the switched-on state of the semiconductor light source so that an undercurrent operation of the light sources is prevented.
Abstract:
An optoelectronic semiconductor chip has a first semiconductor layer sequence which comprises a multiplicity of microdiodes, and a second semiconductor layer sequence which comprises an active region. The first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
Abstract:
A method for producing a thin-film semiconductor body is provided. A growth substrate is provided. A semiconductor layer with funnel-shaped and/or inverted pyramid-shaped recesses is epitaxially grown onto the growth substrate. The recesses are filled with a semiconductor material in such a way that pyramid-shaped outcoupling structures arise. A semiconductor layer sequence with an active layer is applied on the outcoupled structures. The active layer is suitable for generating electromagnetic radiation. A carrier is applied onto the semiconductor layer sequence. At least the semiconductor layer with the funnel-shaped and/or inverted pyramid-shaped recesses is detached, such that the pyramid-shaped outcoupling structures are configured as projections on a radiation exit face of the thin-film semiconductor.
Abstract:
An optoelectronic semiconductor chip is disclosed. In an embodiment the optoelectronic semiconductor chip includes a first semiconductor layer sequence having a plurality of microdiodes, and a second semiconductor layer sequence having an active region. The first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
Abstract:
A luminescence conversion element for wavelength conversion of primary electromagnetic radiation into secondary electromagnetic radiation includes first luminescent material particles that, when excited by the primary electromagnetic radiation, emit a first electromagnetic radiation, a peak wavelength of which is at least 515 nm to at most 550 nm of a green region of the electromagnetic spectrum; second luminescent material particles that, when excited by the primary electromagnetic radiation, emit a second electromagnetic radiation, a peak wavelength of which is at least 595 nm to at most 612 nm of a yellow-red region of the electromagnetic spectrum; and third luminescent material particles that, when excited by the primary electromagnetic radiation, emit a third electromagnetic radiation, a peak wavelength of which is at least 625 nm to at most 660 nm of a red region of the electromagnetic spectrum.
Abstract:
An optoelectronic semiconductor chip has a first semiconductor layer sequence which comprises a multiplicity of microdiodes, and a second semiconductor layer sequence which comprises an active region. The first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
Abstract:
An optoelectronic component includes a semiconductor chip that emits primary radiation from the blue spectral region, a conversion element including at least three phosphors each converting the primary radiation into secondary radiation, wherein the first phosphor emits secondary radiation from the green spectral region, the second phosphor emits secondary radiation from the red spectral region, the third phosphor is a potassium-silicon-fluoride phosphor that emits secondary radiation from the red spectral region, and the component has an Ra value of at least 80 and an R9 value of at least 75, and emits white mixed radiation.