Abstract:
A first insulating layer is formed on a substrate. An opening is formed in the first insulating layer. A barrier layer is formed on the first insulating layer and conforming to sidewalls of the first insulating layer in the opening, and a conductive layer is formed on the barrier layer. Chemical mechanical polishing is performed to expose the first insulating layer and leave a barrier layer pattern in the opening and a conductive layer pattern on the barrier layer pattern in the opening, wherein a portion of the conductive layer pattern protrudes above an upper surface of the insulating layer and an upper surface of the barrier layer pattern. A second insulating layer is formed on the first insulating layer, the barrier layer pattern and the conductive layer pattern and planarized to expose the conductive layer pattern. A second substrate may be bonded to the exposed conductive layer pattern.
Abstract:
Provided are a semiconductor device, a semiconductor package, and an electronic system. The device includes a substrate having a front side and a back side disposed opposite the front side. An internal circuit is disposed on or near to the front side of the substrate. Signal I/O through-via structures are disposed in the substrate. Back side conductive patterns are disposed on the back side of the substrate and electrically connected to the signal I/O through-via structures. A back side conductive structure is disposed on the back side of the substrate and spaced apart from the signal I/O through-via structures. The back side conductive structure includes parallel supporter portions.
Abstract:
In a method for fabricating a semiconductor, a first conductive pattern structure partially protruding upwardly from first insulating interlayer is formed in first insulating interlayer. A first bonding insulation layer pattern covering the protruding portion of first conductive pattern structure is formed on first insulating interlayer. A first adhesive pattern containing a polymer is formed on first bonding insulation layer pattern to fill a first recess formed on first bonding insulation layer pattern. A second bonding insulation layer pattern covering the protruding portion of second conductive pattern structure is formed on second insulating interlayer. A second adhesive pattern containing a polymer is formed on second bonding insulation layer pattern to fill a second recess formed on second bonding insulation layer pattern. The first and second adhesive patterns are melted. The first and second substrates are bonded with each other so that the conductive pattern structures contact each other.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate, a first conductive structure on the substrate, and a second conductive structure on the first conductive structure. The semiconductor device includes first and second metal-diffusion-blocking layers on respective sidewalls of the first and second conductive structures. The semiconductor device includes an insulating layer between the first and second metal-diffusion-blocking layers. Moreover, the semiconductor device includes a metal-diffusion-shield pattern in the insulating layer and spaced apart from the first conductive structure.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate, a first conductive structure on the substrate, and a second conductive structure on the first conductive structure. The semiconductor device includes first and second metal-diffusion-blocking layers on respective sidewalls of the first and second conductive structures. The semiconductor device includes an insulating layer between the first and second metal-diffusion-blocking layers. Moreover, the semiconductor device includes a metal-diffusion-shield pattern in the insulating layer and spaced apart from the first conductive structure.
Abstract:
A first insulating layer is formed on a substrate. An opening is formed in the first insulating layer. A barrier layer is formed on the first insulating layer and conforming to sidewalls of the first insulating layer in the opening, and a conductive layer is formed on the barrier layer. Chemical mechanical polishing is performed to expose the first insulating layer and leave a barrier layer pattern in the opening and a conductive layer pattern on the barrier layer pattern in the opening, wherein a portion of the conductive layer pattern protrudes above an upper surface of the insulating layer and an upper surface of the barrier layer pattern. A second insulating layer is formed on the first insulating layer, the barrier layer pattern and the conductive layer pattern and planarized to expose the conductive layer pattern. A second substrate may be bonded to the exposed conductive layer pattern.
Abstract:
In a method, a first opening is formed in a first insulating interlayer on a first substrate. A first conductive pattern structure contacting a first diffusion prevention insulation pattern and having a planarized top surface is formed in the first opening. Likewise, a second conductive pattern structure contacting a second diffusion prevention insulation pattern is formed in a second insulating interlayer on a second substrate. A plasma treatment process is performed on at least one of the first and second substrates having the first and second conductive pattern structures thereon, respectively. The first and second conductive pattern structures are contacted to each other to bond the first and second substrates.
Abstract:
In a method, a first opening is formed in a first insulating interlayer on a first substrate. A first conductive pattern structure contacting a first diffusion prevention insulation pattern and having a planarized top surface is formed in the first opening. Likewise, a second conductive pattern structure contacting a second diffusion prevention insulation pattern is formed in a second insulating interlayer on a second substrate, plasma treatment process is performed on at least one of the first and second substrates having the first and second conductive pattern structures thereon, respectively. The first and second conductive pattern structures are contacted to each other to bond the first and second substrates.