Abstract:
A semiconductor device includes a substrate, a first semiconductor package disposed on the substrate, and a second semiconductor package spaced apart from the first semiconductor package on the substrate. The second semiconductor package includes a semiconductor chip stacked on the substrate, an adhesion part covering the semiconductor chip, and a heat-blocking structure disposed between the substrate and the semiconductor chip. Heat generated from the first semiconductor package and transmitted to the second semiconductor package through the substrate is blocked by the heat-blocking structure.
Abstract:
A semiconductor package and an electronic system including the same include a package board having an electric circuit pattern. A semiconductor chip is mounted on the package board and electrically connected with the circuit pattern of the package board. A non-contact temperature detector is provided with the semiconductor package and detects a temperature of an external heat source without making contact with the external heat source. A temperature controller controls the semiconductor chip according to the temperature of the external heat source that is detected by the non-contact temperature detector.
Abstract:
A semiconductor package includes a substrate. A lower semiconductor chip is disposed above the substrate. An upper semiconductor chip is disposed on the lower semiconductor chip. A top surface of the lower semiconductor chip at an end of the lower semiconductor chip is exposed. A heat slug disposed above the upper semiconductor chip. A molding layer is disposed between the substrate and the heat slug. The molding layer is configured to seal the lower semiconductor chip and the upper semiconductor chip. An upper spacer is disposed between the lower semiconductor chip and the heat slug. The upper spacer is disposed on the exposed surface of the lower semiconductor chip.
Abstract:
A semiconductor package includes a substrate. A lower semiconductor chip is disposed above the substrate. An upper semiconductor chip is disposed on the lower semiconductor chip. A top surface of the lower semiconductor chip at an end of the lower semiconductor chip is exposed. A heat slug disposed above the upper semiconductor chip. A molding layer is disposed between the substrate and the heat slug. The molding layer is configured to seal the lower semiconductor chip and the upper semiconductor chip. An upper spacer is disposed between the lower semiconductor chip and the heat slug. The upper spacer is disposed on the exposed surface of the lower semiconductor chip.
Abstract:
A method of predicting a temperature includes operatively coupling a temperature prediction circuit to a device including a semiconductor chip, determining a correlation between a current and voltage of the temperature prediction circuit, and predicting a temperature with respect to power applied to the device using the determined correlation.
Abstract:
A semiconductor package device includes a lower package including a lower semiconductor chip mounted on the lower package substrate, a lower molding compound layer disposed on the lower package substrate, a first trench formed in the lower molding compound layer to surround the lower semiconductor chip, and a second trench connected to the first trench to extend to an outer wall of the lower package, the second trench being formed in the lower molding compound layer, an upper package disposed on the lower package. The upper package includes an upper package substrate and at least one upper semiconductor chip mounted on the upper package substrate and a heat transfer member disposed between the lower package and the upper package.
Abstract:
A semiconductor package and an electronic system including the same include a package board having an electric circuit pattern. A semiconductor chip is mounted on the package board and electrically connected with the circuit pattern of the package board. A non-contact temperature detector is provided with the semiconductor package and detects a temperature of an external heat source without making contact with the external heat source. A temperature controller controls the semiconductor chip according to the temperature of the external heat source that is detected by the non-contact temperature detector.
Abstract:
A semiconductor package includes a circuit board having an inner circuit pattern and a plurality of contact pads connected to the inner circuit pattern, at least one integrated circuit (IC) device on the circuit board and making contact with the contact pads, a mold on the circuit board, the mold fixing the IC device to the circuit board, and a surface profile modifier on a surface of the IC device and a surface of the mold, and the surface profile modifier enlarging a surface area of the IC device and the mold to dissipate heat.
Abstract:
A semiconductor package and a method of manufacturing the same are disclosed, wherein the semiconductor package includes a circuit board, a semiconductor chip mounted on the circuit board, an encapsulant positioned on the circuit board and encapsulating the semiconductor chip to the circuit board, and a thermal dissipating member positioned on the encapsulant and having a heat spreader that dissipates a driving heat from the semiconductor chip and a heat capacitor that absorbs excess driving heat that exceeds a heat transfer capability of the heat spreader, such that when a high power is applied to the package, the excess heat is absorbed into the heat capacitor as a latent heat and thus the semiconductor chip is protected from an excessive temperature increase caused by the excess heat, thereby increasing a critical time and performance duration time of the semiconductor package.
Abstract:
A semiconductor package and a method of manufacturing the same are disclosed, wherein the semiconductor package includes a circuit board, a semiconductor chip mounted on the circuit board, an encapsulant positioned on the circuit board and encapsulating the semiconductor chip to the circuit board, and a thermal dissipating member positioned on the encapsulant and having a heat spreader that dissipates a driving heat from the semiconductor chip and a heat capacitor that absorbs excess driving heat that exceeds a heat transfer capability of the heat spreader, such that when a high power is applied to the package, the excess heat is absorbed into the heat capacitor as a latent heat and thus the semiconductor chip is protected from an excessive temperature increase caused by the excess heat, thereby increasing a critical time and performance duration time of the semiconductor package.