Abstract:
A method of manufacturing a semiconductor light emitting device package includes providing a wafer and forming, on the wafer, a semiconductor laminate comprising a plurality of light emitting devices. Electrodes are formed in respective light emitting device regions of the semiconductor laminate. A curable resin is applied to a surface of the semiconductor laminate on which the electrodes are formed. A support structure is formed for supporting the semiconductor laminate by curing the curable resin. Through holes are formed in the support structure to expose the electrodes therethrough. Connection electrodes are formed in the support structure to be connected to the exposed electrodes.
Abstract:
A light emitting device package and a method of manufacturing the light emitting device package are provided. The light emitting package includes a light emitting stack including a first conductivity-type semiconductor layer, an active layer, a second conductivity-type semiconductor layer sequentially stacked, and having a first surface provided by the first conductivity-type semiconductor layer and a second surface provided by the second conductivity-type semiconductor layer and opposing the first surface; a first electrode structure disposed on a portion of the first surface and connected to the first conductivity-type semiconductor layer; a sealing portion disposed adjacent to the light emitting stack; an insulating layer disposed between the light emitting stack and the sealing portion; and a first metal pad disposed on the second surface and passing through the insulating layer at a side of the light emitting stack to connect to the first electrode structure.
Abstract:
In one embodiment, a light emitting device package includes a light emitting device including a substrate and a light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer, stacked on the substrate; a reflective conductive layer provided on the light emitting structure; and a first electrode and a second electrode overlying the reflective conductive layer separated from each other in a first region. The first electrode and the second electrode are electrically insulated from the reflective metal layer and penetrate through the reflective metal layer to be electrically connected to the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively.
Abstract:
A method of manufacturing a light emitting device package includes forming a plurality of light emitting devices by growing a plurality of semiconductor layers on a wafer, and measuring color characteristics of light emitted from each of the plurality of light emitting devices. For each of the plurality of light emitting devices, a type and an amount of wavelength conversion material is determined for color compensating the light emitting device based on a difference between the measured color characteristics and target color characteristics. A wavelength conversion layer is formed on at least two light emitting devices among the plurality of light emitting devices, the wavelength conversion layer having the type and the amount of wavelength conversion material determined for the at least two light emitting devices. The plurality of light emitting devices is then divided into individual light emitting device packages.
Abstract:
A light emitting device package is provided. The light emitting device package includes three light emitting diode (LED) chips configured to emit light having different wavelengths, each of the three LED chips including a light emitting structure having a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer interposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer; a through electrode portion disposed adjacent to the three LED chips; a molding portion encapsulating respective side surfaces of the three LED chips and the through electrode portion; a transparent electrode layer disposed on a first surface of the molding portion, the three LED chips, and the through electrode portion; and three individual electrodes exposed through a second surface of the molding portion and disposed on the three LED chips, respectively.
Abstract:
A method of manufacturing a light emitting diode (LED) package may include forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer on a growth substrate, forming first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively, bonding a first surface of a light transmissive substrate opposite to a second surface thereof to the light emitting structure, identifying positions of the first and second electrodes that are seen through the second surface of the light transmissive substrate, forming one or more through holes in the light transmissive substrate to correspond to the first and second electrodes, and forming first and second via electrodes by filling the through holes with a conductive material.
Abstract:
A light emitting diode package includes a package body having first and second electrode structures, a light emitting diode chip having a surface, on which first and second electrodes are disposed. The light emitting diode chip is disposed on the first and second electrode structures of the package body. A sheet-type wavelength conversion layer having a substantially constant thickness is disposed on an upper surface of the light emitting diode chip, and an encapsulating portion is disposed to surround the light emitting diode chip and the wavelength conversion layer. The encapsulating portion has an upper surface substantially parallel to the wavelength conversion layer. Side surfaces of the encapsulating portion have a plurality of side slope sections inclined toward the upper surface of the encapsulating portion.
Abstract:
A semiconductor light emitting device package includes a light emitting structure having a first conductive semiconductor layer, an active layer, a second conductive semiconductor layer, a first surface, and a second surface, a first electrode and a second electrode disposed on the second surface of the light emitting structure; an insulating layer, a first metal pad and a second metal pad disposed on the insulating layer, and each having a surface with a first fine uneven pattern so as to have a first surface roughness, a first bonding pad and a second bonding pad disposed on the first metal pad and the second metal pad, respectively, and each having a surface with a second fine uneven pattern so as to have a second surface roughness, and an encapsulant encapsulating the first bonding pad, the second bonding pad, the first metal pad, and the second metal pad.
Abstract:
A method of manufacturing a semiconductor light emitting device package includes providing a wafer and forming, on the wafer, a semiconductor laminate comprising a plurality of light emitting devices. Electrodes are formed in respective light emitting device regions of the semiconductor laminate. A curable resin is applied to a surface of the semiconductor laminate on which the electrodes are formed. A support structure is formed for supporting the semiconductor laminate by curing the curable resin. Through holes are formed in the support structure to expose the electrodes therethrough. Connection electrodes are formed in the support structure to be connected to the exposed electrodes.
Abstract:
A light emitting device package includes: a plurality of light emitting chips configured to emit respective wavelength lights, each chip comprising electrodes at a bottom of the chip to form a flip-chip structure; a plurality of wirings directly connected to the electrodes of the chips, respectively; a plurality of electrode pads disposed below the chips and directly connected to the wirings, respectively; and a molding member integrally formed in a single layer structure to cover upper surfaces and side surfaces of the chips, and including a translucent material having a predetermined transmittance, wherein the wirings are disposed below a lower surface of the molding member.