摘要:
The object of the present invention is to provide an aqueous dispersion that can give the required properties for a wide range of uses including electronic materials, magnetic materials, optical materials and polishing materials, and to provide an aqueous dispersion for chemical mechanical polishing (CMP slurry) that gives an adequate polishing rate without creating scratches in polishing surfaces. Another object of the present invention is, to provide a method for manufacture of semiconductor devices using a CMP slurry that can control progressive erosion due to scratches and the like during polishing and that can achieve efficient flattening of working films, and to provide a method for formation of embedded wiring. The aqueous dispersion or CMP slurry of the present invention contains polymer particles made of thermoplastic resins or the like, and inorganic particles made of alumina, silica or the like, wherein the zeta potentials of the polymer particles and inorganic particles are of opposite signs, and they are bonded by electrostatic force to form aggregates as composite particles. The aggregates are subjected to ultrasonic wave irradiation or shear stress with a homogenizer to give more uniformly dispersed composite particles.
摘要:
A polishing apparatus and method has a function of polishing a surface of a film formed on a substrate to a flat mirror finish and a function of polishing unnecessary metal film such as copper film deposited on an outer peripheral portion of the substrate to remove such unnecessary metal film. The polishing apparatus comprises a surface polishing mechanism comprising a polishing table having a polishing surface and a top ring for holding the substrate and pressing the substrate against the polishing surface of the polishing table to thereby polish a surface of the substrate, and an outer periphery polishing mechanism for polishing an outer peripheral portion of the substrate.
摘要:
According to the ion generation method, ion source material composed of an element of desired ions to be generated and I is heated so that vapor of the compound is generated, and the ions are generated by discharging the vapor. The iodide has no corrosiveness, and can be stably ionized. Further, it hardly reacts with oxygen or water and is safe.
摘要:
An electrically conductive mask having openings formed is located above a semiconductor substrate and ions are implanted into the surface of the semiconductor substrate through the electrically conductive mask, thereby forming ion implanted layers. For ion implantation under different conditions, a dedicated electrically conductive mask is used with each ion implantation step.
摘要:
After a barrier film is formed on a pad electrode, Ni particles having a diameter of 2 &mgr;m or less are selectively deposited on the barrier film, thereby forming a Ni fine particle film. Then, a bump electrode made of a solder ball is provided on the pad electrode through the Ni fine particle film. Thereafter, the bump electrode is melted by a heat treatment to join the Ni fine particle film to the bump electrode. Thus, a bump electrode structure is finished.
摘要:
Water-laden solid matter is provided which is obtained by adding 40 to 300 weight parts of water to 100 weight parts of inorganic oxide particles synthesized by fumed process or metal evaporation oxidation process, slurry for polishing is provided which is manufactured by using the water-laden solid matter, and a method for manufacturing a semiconductor device using the above slurry. Said water-laden solid matter is within a range of 0.3 to 3 g/cm3 in bulk density and within a range of 0.5 to 100 mm&phgr; in average particle size when manufactured granular. Said slurry for polishing is manufactured from the water-laden solid matter, and the average particle size thereof after being dispersed in water is within a range of 0.05 to 1.0 &mgr;m.
摘要翻译:提供含水固体物质,其通过向通过热解法或金属蒸发氧化法合成的100重量份的无机氧化物颗粒中加入40至300重量份的水而获得,提供了通过使用水 - 负载固体物质,以及使用上述浆料制造半导体器件的方法。 所述含水固体物质的体积密度为0.3〜3g / cm 3,制粒时的平均粒径为0.5〜100mmφ的范围。 用于抛光的所述浆料由含水固体物质制成,其在分散在水中的平均粒径在0.05-1.0μm的范围内。
摘要:
A semiconductor wafer etching system exhausts an exhaust gas including fluorocarbon gas to an exhaust line. Two traps, that are capable of trapping the fluorocarbon gas in the exhaust gas by cooled adsorption and releasing the adsorbed fluorocarbon gas by heating, are alternately arranged on the exhaust line. The two traps are alternately separated from the exhaust gas and regenerated on a regeneration line which serves to release the adsorbed fluorocarbon gas from the traps. The trap which is in the trap mode to adsorb the fluorocarbon gas is cooled to −120° C. or less. The trap which is in the regeneration mode to release the adsorbed fluorocarbon gas is heated to −100° C. or more.
摘要:
Electrical connection device for forming electrical connection between a first portion and a second portion of a semiconductor device. The first portion is set near or in contact with the second portion. The first and second portions are electrically connected by spraying fine metal particles of gold, nickel or copper in a carrier gas of helium, argon, hydrogen or nitgrogen on the first and second portions to form a metal bump. Prior to spraying the fine metal particles to form the metal bump, hard particles of titanium, copper, hafnium, zirconium or vanadium may be sprayed on the first and second portions to remove contamination layers.
摘要:
A semiconductor device manufacturing method comprises a step of forming a trench to a first insulation film formed on a semiconductor substrate, and forming a lower level wiring in the trench, a step of forming at least one conductive layer on the semiconductor substrate to coat the lower level wiring, a step of forming at least one thin film layer on the conductive layer, a step of forming a hard mask by patterning the thin film, a step of etching the conductive layer by using the hard mask as an etching mask, and forming a conductive pillar-shaped structure, whose upper surface is covered with the hard mask, on the lower level wiring, a step of forming a second insulation film on the semiconductor substrate so that the pillar-shaped structure is buried, a step of forming a wiring trench in which at least the hard mask is exposed, and a step of burying a conductor into the wiring trench after the hard mask is removed, and forming an upper level wiring in the wiring trench.
摘要:
A method comprises the steps of forming a damaged layer on a silicon substrate by subjecting the silicon substrate to a plasma treatment, forming a silicon oxide layer by exposing the surface of the damaged layer to an oxygen plasma to oxidize the surface of the silicon substrate including the damaged layer and selectively eliminating the silicon oxide layer under a condition of a high selective ratio to the silicon, in which the film thickness of the silicon oxide layer is controlled by controlling an ion energy of the oxygen plasma and exposure time of the surface of the damaged layer to the oxygen plasma in accordance with the film thickness of the damaged layer.