摘要:
In a method of preparing a ruthenium-containing catalyst on a non-conductive metal oxide support comprises dissolving one or more ruthenium precursor compounds in an liquid organic polyol, combining the thus obtained solution with (a) nano-powder(s) of one or more metal oxides in a ratio of moles metal oxide(s) to moles ruthenium atoms in the one or more ruthenium precursor compounds of about 0:1 to about 6:1, the metal oxide nano-powder(s) having a surface area of from about 5 to about 300 m2/g and a point of zero charge (PZC) of pH 5.5 or higher, agitating the thus obtained mixture, adding pre-shaped alumina support pellets to the agitated mixture, which is than heated at a temperature of about 50° C. to the boiling point of the organic polyol, until the reaction is finished, cooling the mixture and combining it with an aqueous solution of NaNO3 and/or KNO3, agitating the resultant mixture, separating the solvent and the solids, and drying the thus obtained solid pellets of alumina, or alumina and the metal oxide(s) of the nano-powder(s) coated with ruthenium and an additional amount Na and/or K ions. Also disclosed is the supported ruthenium-containing catalyst obtainable by the method and the use thereof in decomposing ammonia into nitrogen and oxygen.
摘要:
A catalyst is provided, the catalyst comprising rods having mean length of 100 microns or less, the rods comprising a metal molybdate or tungstate, the metal being selected from the group consisting of iron, manganese, nickel, chromium, vanadium, aluminum, silver, titanium, copper, bismuth, and cobalt. A method of making such a catalyst is also provided.
摘要:
The present invention relates to a catalyst for oxygenate synthesis for synthesizing an oxygenate from a mixed gas containing hydrogen and carbon monoxide, the catalyst for oxygenate synthesis containing: a component (A): rhodium, a component (B): manganese, a component (C): an alkali metal, and a component (D): a component (D1), component (D2) or component (D3), wherein the component (D1) is one or more substances selected from the group consisting of titanium, vanadium and chromium, the component (D2) is an element belonging to group 13 of the periodic table, and the component (D3) is one or more substances selected from the group consisting of magnesium and lanthanoids. According to the present invention, an oxygenate can be synthesized efficiently from a mixed gas containing hydrogen and carbon monoxide.
摘要:
The present invention relates to a process for obtaining metal oxide catalysts comprising gallium which are capable of synthesising higher alcohols from lower alcohols. The process for obtaining said catalysts is also disclosed.
摘要:
A catalyst is provided, the catalyst comprising rods having mean length of 100 microns or less, the rods comprising a metal molybdate or tungstate, the metal being selected from the group consisting of iron, manganese, nickel, chromium, vanadium, aluminium, silver, titanium, copper, bismuth, and cobalt. A method of making such a catalyst is also provided.
摘要:
The present invention relates to a process for the preparation of a zeolitic material having a CHA framework structure, said zeolitic material comprising zeolite crystals having a core-shell structure, wherein said process comprises the steps of (1) providing a mixture comprising one or more sources for Z2O5, one or more sources for X2O3, optionally one or more structure directing agents, and seed crystals having a CHA framework structure, wherein the CHA framework structure of the seed crystals comprises YO2, X2O3, and optionally Z2O5, and wherein the seed crystals have a diameter of 450 nm or greater; (2) crystallizing the mixture provided in (1) to afford zeolite crystals comprising a core of seed crystal provided in step (1) and a shell crystallized on the seed crystal; wherein Z is a pentavalent element, Y is a tetravalent element, and X is a trivalent element.
摘要翻译:本发明涉及一种制备具有CHA骨架结构的沸石材料的方法,所述沸石材料包含具有核 - 壳结构的沸石晶体,其中所述方法包括以下步骤:(1)提供包含一种或多种 Z 2 O 5的源,X 2 O 3,任选的一种或多种结构导向剂的一种或多种来源,以及具有CHA骨架结构的晶种,其中晶种的CHA骨架结构包含YO 2,X 2 O 3和任选的Z 2 O 5,并且其中所述种子 晶体的直径为450nm以上; (2)使(1)中提供的混合物结晶,得到包含步骤(1)中提供的晶种核心的沸石晶体和在晶种上结晶的壳; 其中Z为五价元素,Y为四价元素,X为三价元素。
摘要:
The present invention relates to a zeolite comprising platinum. The invention furthermore relates to a method for producing said zeolite comprising platinum according to the invention, to the use of said zeolite as an oxidation catalyst and hydrocarbon reservoir and to a catalyst component comprising the zeolite according to the invention.
摘要:
A method for producing a catalytically-active material having at least one base component and at least one catalytically-active component in which the at least one base component is heated to a softening or melting temperature to form a softened or molten base component. While the base component is in the softened or molten state, at least one catalytically-active component is incorporated into or onto the base component, forming the catalytically-active material. In accordance with one embodiment, a catalyst precursor is introduced into the base component and subsequently transformed to a catalytically-active component.
摘要:
A method for producing a hydrorefining catalyst includes the step of preparing a carrying solution containing molybdenum, phosphorus, and cobalt or nickel and bringing a carrier composed of an inorganic porous oxide into contact with the carrying solution. A molar ratio of molybdenum with respect to phosphorus in the carrying solution is 2.5 to 7.0, a molar ratio of a total of molybdenum, cobalt, and nickel with respect to phosphorus is 3.5 to 9.0, and a molar ratio of molybdenum with respect to a total of cobalt and nickel is 1.9 to 2.8. pH of the carrying solution is 2 to 5, and a Raman spectroscopy spectrum of the carrying solution has a peak top between 965 cm−1 and 975 cm−1. The catalyst obtained by this method is excellent in desulfurizing activity.
摘要:
A process for the production of a supported catalyst. The process comprises heating a slurry that comprises a catalyst support and at least one active catalytic ingredient precursor. Gas is introduced to the slurry at a sufficient pressure to reduce the at least one active catalytic ingredient precursor and deposit at least one active catalytic ingredient onto a surface of the catalyst support to form the supported catalyst. The supported catalyst has a large active catalytic surface area.