Abstract:
A method of manufacturing a printed circuit board (PCB) for interconnecting integrated circuit devices includes a lead frame sandwiched between two multilayer substrates. Integrated circuit devices are mounted on the top of the upper substrate and on the bottom of the lower substrate to provide increased packaging density. Thus, according to the present invention, it is possible to provide a simply constructed electronic component mounting PCB which facilitates the design of circuits, and affords excellent connection reliability, which can readily form a heat radiating structure, and in which the thermal matching with the electronic component is excellent.
Abstract:
An improved printed circuit board (PCB) for interconnecting integrated circuit devices includes a lead frame sandwiched between two multilayer substrates. Integrated circuit devices are mounted on the top of the upper substrate and on the bottom of the lower substrate to provide increased packaging density. Thus, according to the present invention, it is possible to provide a simply constructed electronic component mounting PCB which facilitates the design of circuits, and affords excellent connection reliability, which can readily form a heat radiating structure, and in which the thermal matching with the electronic component is excellent.
Abstract:
A flexible circuit suitable for high density applications and having a long flexural life is disclosed. A thin film metallic ground plane deposited on a dielectric substrate electrically shields the conductor traces in the flexible circuit and eliminates cross-talk between conductor traces without reducing the flexibility or the flexural life of the flexible circuit.
Abstract:
In a control device (11), the strip conductors (29) are applied to the interior wall (28) of the housing (15), consisting of plastic, with integrated plugs (16) with the aid of novel deposition processes. In this case the laser-assisted deposition process or the Ivonding.RTM. process can be used in a particularly advantageous manner. It is possible by means of these types of manufacture to dispose the plug connectors (24) in a simple manner in a through-bore (23) in the housing (15) and to connect them directly with the strip conductors (29) on the interior wall (28). Bonded connections (31) for connecting hybrid circuits (13), for example, can be attached in a simple manner at the other end of the strip conductors (29). Because of this, it is possible to automate the manufacturing process to a large degree and to make it inexpensive.
Abstract:
A method of manufacturing a substrate for mounting electronic components according to this invention comprises the steps of forming a mask on a portion to be electrically connected to an exterior of a lead frame, of forming resin layers on both side surfaces of the lead frame by prepregs or the like, of removing the resin layer on the mask, and of removing the mask, and in the substrate for mounting electronic components manufactured according to this method, the substrate is integrally formed with the lead frame, and the electrical connection of the substrate to the lead frame is performed by through hole plating without using fine metal wiring.
Abstract:
A printed circuit assembly for a card file packaging system is disclosed that includes a flat flexible dielectric member having printed conductors disposed thereon patterned to form a printed circuit and a single piece rigid molded dielectric member to which the flexible member is secured for support with the molded member having molded therein at least holes to support leads of the electrical components and, hence, the components themselves of the printed circuit and to enable connection of the leads of the electrical components to the printed conductors on the flexible member, slides for tracks of the card file system and electrical connectors to connect the printed circuit assembly to the card file system.
Abstract:
A continuous process for fabricating a substrate for mounting of an integrated circuit thereon, in which an array of conductive patterns is formed in a copper sheet on a flexible insulator by a rotogravure printing and subtractive copper etch process. The flexible insulator sheet is then cut into individual pieces and a rigid member is mounted to the opposite side of the flexible insulator from the array of conducting patterns by means of contact pins which fasten the rigid members to the flexible insulator and are electrically connected to the conducting patterns.
Abstract:
A printed circuit board connecting device (1) for connecting printed circuit boards (3, 5) includes a non-conductive plate (21) having a top side and a bottom side, and a plurality of interface connections (23) which are arranged in the plate (21) so as to be spaced apart from one another. Each interface connection (23) has grouped-together conductors (41) which extend through the plate (21) and which are laterally enclosed by the plate material and the end regions of which protruding on the top side and lower side from the plate (21) can be fixed to interfaces (13) of two printed circuit boards (3, 5) to be connected. Therefore, the conductors (41) form both a mechanical and an electrical connection between the interfaces (13) of the printed circuit boards (3, 5).
Abstract:
A circuit board includes a plate member capable of holding a printed circuit board, the printed circuit board including an electronic component, and a cooling member provided on the electronic component, the printed circuit board and the electronic component being positioned between the plate member and the cooling member; and a circuit provided to the plate member and allowed to be electrically connected with the printed circuit board.
Abstract:
An exemplary miniature support has upper and lower spaced-apart engagement surfaces each having at least a portion that are parallel to each other. Two supports each with an end supporting the upper engagement surface and another end supporting the lower engagement surface. The two supports have a spring-like property so that the upper and lower engagement surfaces can repeatedly move between an uncompressed state when not engaged to provide an interconnection and a compressed state when engaged between two opposing boards to provide an interconnection between the boards. The connector is preferably made using 3-D printing and may be integrally made as part of a board also made using the same 3-D printing. The support may have upper and lower engagement surfaces and at least one of the at least two supports that are conductive to establish connectivity between the upper and lower engagement surfaces.