Abstract:
An integrated imaging device supports front face illumination with one or more photosensitive regions formed in a substrate. A lower dielectric region is provided over the substrate, the lower dielectric region having an upper face. A metal optical filter having a metal pattern is provided on the upper face (or extending into the lower dielectric region from the upper face). An upper dielectric region is provided on top of the lower dielectric region and metal optical filter. The lower dielectric region is at least part of a pre-metal dielectric layer, and the upper dielectric region is at least part of a metallization layer.
Abstract:
A stand-alone device comprising a silicon wafer having its front surface including a first layer of a first conductivity type and a second layer of a second conductivity type forming a photovoltaic cell; first vias crossing the wafer from the rear surface of the first layer and second vias crossing the wafer from the rear surface of the second layer; metallization levels on the rear surface of the wafer, the external level of these metallization levels defining contact pads; an antenna formed in one of the metallization levels; and one or several chips assembled on said pads; the metallization levels being shaped to provide selected interconnects between the different elements of the device.
Abstract:
The invention concerns a circuit comprising: a first transistor (202) having a first main current node coupled to a first voltage signal (CNVDD), a control node coupled to a second voltage signal (CPVDD) and a second main current node coupled to an output node (206) of the circuit; a second transistor (204) having a first main current node coupled to a third voltage signal (CNGND), a control node coupled to a fourth voltage signal (CPGND) and a second main current node coupled to said output node of the circuit; and circuitry (210, 212) adapted to generate said first, second, third and fourth voltage signals based on a pair of differential input signals (CP, CN), wherein said first and second voltage signals are both referenced to a first supply voltage (VDD) and wherein said third and fourth voltage signals are both referenced to a second supply voltage (GND).
Abstract:
A MOS transistor has a gate insulator layer that is made of a material of high dielectric constant deposited on a substrate. The gate insulator layer extends, with a constant thickness, under and beyond a gate stack. Spacers of low dielectric constant are formed on either side of the gate stack and vertically separated from the substrate by the extension of the gate insulator layer beyond the sides of the gate stack. The spacers of low dielectric constant are preferably air spacers.
Abstract:
A method for authorizing an access to a table of address correspondence between a multitask CPU and at least one memory containing several programs, consisting of calculating, on each task change of the CPU, a signature of at least part of the program instruction lines, and checking the conformity of this signature with a signature recorded upon previous execution of the involved program.
Abstract:
A variable capacitance device including: first and second transistors coupled in parallel between first and second nodes of the capacitive device, a control node of the first transistor being adapted to receive a control signal, and a control node of the second transistor being adapted to receive the inverse of the control signal, wherein the first and second transistors are formed in a same semiconductor well.
Abstract:
A method for manufacturing a transistor includes forming a stack of semiconductor on insulator type layers including at least one substrate, surmounted by a first insulating layer and an active layer to form a channel for the transistor; forming a gate stack on the active layer; producing a source and a drain including forming, on either side of the gate stack, cavities by at least one step of etching the active layer, the first insulating layer, and part of the substrate selectively to the gate stack to remove the active layer, the first insulating layer, and a portion of the substrate outside regions situated below the gate stack; forming a second insulating layer on the bared surfaces of the substrate, to form a continuous insulating layer with the first insulating layer; baring of the lateral ends of the channel; and the filling of the cavities by epitaxy.
Abstract:
The invention relates to a method for producing an interconnection pad on a conducting element comprising an upper face and a side wall; the method being executed from a substrate at least the upper face of which is insulating; the conducting element going through at least an insulating portion of the substrate, the method being characterized in that it comprises the sequence of the following steps: a step of embossing the conducting element, a step of forming, above the upper insulating face of the substrate, a stack of layers comprising at least one electrically conducting layer and one electrically resistive layer, a step of partially removing the electrically resistive layer, a step of electrolytic growth on the portion of the electrically conducting layer so as to form at least one interconnection pad on said conducting element.
Abstract:
A triggerable bidirectional semiconductor device has two terminals and at least one gate. The device comprises, within a layer of silicon on insulator, a central semiconductor zone incorporating the at least one gate and comprising a central region having a first conductivity type, two intermediate regions having a second conductivity type respectively arranged on either side of and in contact with the central region, two semiconductor end zones respectively arranged on either side of the central zone, each end zone comprising two end regions having opposite types of conductivity, in contact with the adjacent intermediate region, the two end regions of each end zone being mutually connected electrically in order to form the two terminals of the device.
Abstract:
A method of transcoding a sub-picture unit each comprising encoded sub-picture pixel data including sub-picture lines separated into at least a first field and a second field as well as a set of display control commands associated with the sub-picture pixel data, comprises the step of pre-processing (53) the display control commands to prepare transcoding to frame format. Encoded lines of said top and bottom fields are then merged (56,73) into a single encoded frame and the display control commands are modified (56,74) according to changes in encoded sub-picture pixel data before outputting.