摘要:
A method is disclosed for optimizing optical channel signal demultiplexing in a monolithic receiver photonic integrated circuit (RxPIC) chip by providing an integrated channel signal demultiplexing with multiple waveguide input verniers provided to an WDM signal demultiplexer. The RxPIC chip may optionally include an integrated amplifier in at least some of the waveguide input verniers. The RxPIC chip may be comprised of, in monolithic form, a plurality of optional semiconductor optical amplifiers (SOAs) at the input of the chip to receive a WDM signal from an optical link which is provided along a plurality of waveguide input verniers to an integrated optical demultiplexer, such as, but not limited to, an arrayed waveguide grating (AWG), as a WDM signal demultiplexer. Thus, optical outputs from the respective semiconductor laser amplifiers are provided as vernier inputs to the optical demultiplexer forming a plurality of input verniers at the input to the optical demultiplexer. One of the vernier inputs to the chip is selected for operation in the RxPIC chip that corresponds to an optimum performance in matching a WDM channel signal wavelength grid of the received WDM signal to a wavelength grid of the on-chip optical demultiplexer.
摘要:
A method of operating an array of laser sources integrated as an array in a single monolithic chip where the steps include designing the laser sources to have different target emission wavelengths so that together they form a spectral emission wavelength grid, coupling outputs from the laser sources to an array of gain/loss elements also integrated on the single monolithic chip, one each receiving the output from a respective laser source; and adjusting the outputs with the gain/loss elements so that the power levels across the laser source array are substantially uniform.
摘要:
A monolithic photonic integrated circuit (PIC) chip comprises an array of modulated sources providing a plurality of channel signals of different wavelengths and an optical combiner coupled to receive the channel signals and produce a combined output of the channel signals. The arrays of modulated sources are formed as ridge waveguides to enhance the output power from the respective modulated sources so that the average output power from the sources is approximately 2 to 4 times higher than in the case of comparable arrays of modulated sources formed as buried waveguides.
摘要:
An optical amplifier includes a plurality of optical paths each carrying an optical signal and each including active optical fiber. A shared pump laser is coupled to the plurality of optical paths and provides pump power to the plurality of optical paths to individually amplify the optical signals. The plurality of optical paths includes input and output optical isolators and a coupler for coupling the pump power to the optical path. The active optical fiber is doped with an implant selected from the group of rare earth metals, erbium, ytterbium, and both ytterbium and erbium. A variable attenuator can be connected between the pump laser and the coupler of at least one of the plurality of optical paths or adjacent to the output isolator of one of the optical paths. Another optical amplifier serially couples optical signals to the optical path on a common gain media.
摘要:
A laser marking system includes a high power fiber laser with a double clad fiber having a doped core surrounded by an inner pump cladding and providing an optical output for marking; a high power laser diode source for pumping the double clad fiber laser via an input into the inner pump cladding; an optical scanner coupled to receive the marking output from the double clad fiber laser to scan the output over a surface of an article to be marked by sweeping the marking output in one, two or three dimensions to form strokes, the completion of which comprises indicia to be marked on the article surface; and a controller to control the operation of the scanner synchronized with the modulation of the laser diode pump source to initiate the marking output and sweep and modulate the marking optical output in one, two or three dimensions to form strokes comprising the indicia. A main advantage of the fiber laser marking system over CO2 and YAG laser marking systems is the ability to provide modulation via the semiconductor laser diode at the input to the marking laser rather than having to modulate the optical power beam at the output of the marking laser, such as through an acusto-optic modulator, which provides for a pulse of non-uniform stability across the pulse width with a substantial decrease in the amount of power in the modulated beam output. Also disclosed is circuitry to dampen the ON-time rise of a current signal input for operation of the laser diode pump source to improve the ON-time quality of the marking optical output created by the double clad fiber marking laser.
摘要:
Power scaling by multiplexing multiple fiber gain sources with different wave-lengths is useful in printing applications requiring higher optical powers to perform the printing function, such as through thermal inducement in thermal ablation, thermal fusion, thermal diffusion or thermal transfer. A marking system is disclosed using a plurality of laser sources operating at different wavelengths with their respective outputs coupled into a respective single mode fiber. At least one WDM combiner is coupled to receive and combine the laser source outputs into a single output. The combined power single output provides sufficient power intensity to induce thermal marking on a marking medium.
摘要:
A high power laser optical amplifier system for material processing comprises multiple stage fiber amplifiers with rejection of propagating ASE buildup in and between the amplifier stages as well as elimination of SBS noise providing output powers in the range of about 10 &mgr;J to about 100 &mgr;J or more. The system is driven with a time varying drive signal from a modulated semiconductor laser signal source to produce an optical output allowing modification of the material while controlling its thermal sensitivity by varying pulse shapes or pulse widths supplied at a desire repetition rate via modulation of a semiconductor laser signal source to the system to precisely control the applied power application of the beam relative to the thermal sensitivity of the material to be processed. The high power fiber amplifier system has particular utility in high power applications requiring process treatment of surfaces, such as polymeric, organic, ceramic and metal surfaces, e.g., material processing, surface texturing, heat treatment, surface engraving, fine micro-machining, surface ablation, cutting, grooving, bump forming, coating, soldering, sealing, surface diffusion and surface conversion to a compound. A particular example is given for texturing of disk surfaces of magnetic disk media prior to the deposition or coating of a thin magnetic film on the textured surfaces to prevent slider stiction.
摘要:
A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
摘要:
A high power laser optical amplifier system for material processing comprises multiple stage fiber amplifiers with rejection of propagating ASE buildup in and between the amplifier stages as well as elimination of SBS noise providing output powers in the range of about 10 .mu.J to about 100 .mu.J or more. The system is driven with a time varying drive signal from a modulated semiconductor laser signal source to produce an optical output allowing modification of the material while controlling its thermal sensitivity by varying pulse shapes or pulse widths supplied at a desire repetition rate via modulation of a semiconductor laser signal source to the system to precisely control the applied power application of the beam relative to the thermal sensitivity of the material to be processed. The high power fiber amplifier system has particular utility in high power applications requiring process treatment of surfaces, such as polymeric, organic, ceramic and metal surfaces, e.g., material processing, surface texturing, heat treatment, surface engraving, fine micro-machining, surface ablation, cutting, grooving, bump forming, coating, soldering, sealing, surface diffusion and surface conversion to a compound. A particular example is given for texturing of disk surfaces of magnetic disk media prior to the deposition or coating of a thin magnetic film on the textured surfaces to prevent slider stiction.
摘要:
An optical amplifier system includes a fiber amplifier doped with rare earth dopant provided in its fiber core. A plurality of fiber lasers have their light outputs optically coupled together for launching into the fiber amplifier for optically pumping the amplifier. Each of the fiber lasers have a rare earth dopant provided in its fiber core for stimulated lasing emission with the rare earth dopant of the fiber amplifier being different from the rear earth dopant of the fiber lasers. A reflector may be provided in each of the coupling fibers for reflecting a portion of the respective light outputs back into the fiber lasers to control their wavelength of operation, the wavelength of operation of the reflectors chosen to be within a high absorption region of the absorption band of the fiber amplifier. Where the pump source is a semiconductor laser source, the source may include a flared gain section to increase the output intensity of the light output of the source.