Abstract:
A substrate inspection apparatus 1-1 (FIG. 1) of the present invention performs the following steps of: carrying a substrate “S” to be inspected into an inspection chamber 23-1; maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and/or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.
Abstract:
A specimen fabrication apparatus including: an ion source, an optical system for irradiating a projection ion beam to a sample, wherein the optical system includes a patterning mask to form a ion beam emitted from the ion source into the projection ion beam, a sample stage to mount the sample, a vacuum specimen chamber to contain the sample stage, a probe for separating a micro-specimen from the sample by irradiation of the projection ion beam, a specimen holder to fix the micro-specimen, wherein the projection ion beam is irradiated to the micro-specimen fixed to the specimen holder and extracted by the probe in the specimen chamber, so that a finish fabrication to the micro-specimen is enabled.
Abstract:
An end effector for supporting a microsample during instrumental analysis, including a generally planar body and a cantilever tip configured to be associated with the microsample.
Abstract:
We disclose a gripper and associated apparatus and methods for delivering nano-manipulator probe tips inside a vacuum chamber. The gripper includes a tube; a compression cylinder inside of and coaxial with the tube; and at least one elastic ring adjacent to the compression cylinder. There is a vacuum seal coaxial with the compression cylinder for receiving and sealing against a probe tip. An actuator is connected to the compression cylinder for compressing the elastic ring and causing it to grip the probe tip. Thus the probe tip can be gripped, transferred to a different location in the vacuum chamber, and released there. Samples attached to the probe tips will be transferred to a TEM sample holder, shown in several embodiments, that includes a bar having opposed ends; an arm attached to each opposed end of the bar; one or more slots for receiving a probe tip; and, each slot having an inner part and an outer part, where the inner part is smaller than the outer part. The TEM sample holders just described are inserted into a carrier cassette. A cassette for transferring one or more TEM sample holders comprises a platform; at least one bar extending upwardly from the platform; the bar having a groove for receiving and holding a TEM sample holder. A rotatable magazine holds one or more probe tips and selectively releases the tips. The magazine includes a cartridge having a plurality of longitudinal openings for receiving probe tips and dispensing probe tips.
Abstract:
A carrier for the masks used in Electron Projection Lithography, or other workpieces used in nanotechnology fields, comprises a rectangular frame having a set of four electrostatic chucks in the top surface for holding the mask above a central aperture that has an electron absorber on the bottom for suppressing backscattering; the frame being supported by a bottom carrier that grips the frame with a set of flexures flexible in the z-direction, stiff in an azimuthal direction and flexible in a radial direction.
Abstract:
A method of manufacturing a transmission electron microscope inspection sample. The sample is mounted into a recess in the mount and the sample is grinded to a preset target thickness. A recess for mounting the sample and a groove for separating the sample from the recess are formed on a top surface of the mount. The sample is fixed into the recess using mounting wax. The protruding portion of the sample protrudes above the mount and is grinded by the grinder. The depth of the recess is based on the target thickness of the sample. The protruding portion of the sample is grinded to the top surface of the mount.
Abstract:
A novel MEMS assembly and testing system that utilizes a scanning electron microscope (SEM) having 5 axes of freedom as the imaging instrument. Microgrippers or other tools mounted at the end of a linear motion feed through device having a motion resolution of about 10 nanometers are used as the manipulator. All of the assembly features are located inside of a vacuum chamber to permit operation of the SEM imaging system. A variety of other auxiliary devices that support the MEMS assembly and testing system are also included to enhance the capabilities thereof.
Abstract:
A support 55 comprises a dielectric 60 covering a primary electrode 70, the dielectric 60 having a surface 75 adapted to receive a substrate 25 and a conduit 160 that extends through the dielectric 60. The thickness of a portion of the dielectric 60 between an edge 195 of the primary electrode 70 and a surface 180 of the conduit 160 is sufficiently large to reduce the incidence of plasma formation in the conduit 160 when the primary electrode 70 is charged by an RF voltage to form a plasma of gas in the chamber 30 during processing of the substrate 25.
Abstract:
An ion implantation system that rapidly and efficiently processes large quantities of workpieces, such as flat panel displays. The ion implantation system includes a high vacuum process chamber that mounts an ion source, a single workpiece translating stage, and a loadlock. The single workpiece handling assembly mounted within the process chamber both removes the workpiece from the loadlock and supports the workpiece during implantation by the ion beam generated by the ion source. The process chamber is in selective fluid communication with a loadlock assembly, which in turn is mechanically integrated with a workpiece loading or end station. Additionally, the workpiece handling assembly includes a translation stage or element for translating the workpiece in a linear scanning direction during implantation. This linear scanning direction extends along a path transverse or orthogonal to the horizontal longitudinal axis of the implantation system. According to one practice, the scanning direction and the longitudinal axis form an angle therebetween that is less than or equal to about 85 degrees.
Abstract:
An ion implanter for implanting ions into a batch of semiconductor wafers comprises a wafer holding disk of the centrifugal holding type, and a plurality of wafer rests in the wafer holding disk having a wafer holding surface which is conically curved. When the wafer holding disk is rotated, the wafer is pushed onto the wafer holding surface so that the surface of the wafer is curved nearly in the same manner as the conically-curved inner surface of the peripheral portion of the s wafer holding disk As a result, an ion beam being irradiated upon the surface of the wafer is always perpendicular to the surface of the wafer.