Abstract:
An apparatus for the manufacture of at least substantially hydrogen-free ta-C layers on substrates, which includes a vacuum chamber, which is connectable to an inert gas source and a vacuum pump, a support device in the vacuum chamber, at least one graphite cathode having an associated magnet arrangement forming a magnetron that serves as a source of carbon material, a bias power supply for applying a negative bias voltage to the substrates on the support device, at least one cathode power supply for the cathode, which is connectable to the at least one graphite cathode and to an associated anode and which is designed to transmit high power pulse sequences spaced at intervals of time, with each high power pulse sequence comprising a series of high frequency DC pulses adapted to be supplied, optionally after a build-up phase, to the at least one graphite cathode.
Abstract:
Methods and apparatus for processing substrates are provided herein. In some embodiments, a physical vapor deposition chamber includes a first RF power supply having a first base frequency and coupled to one of a target or a substrate support; and a second RF power supply having a second base frequency and coupled to one of the target or the substrate support, wherein the first and second base frequencies are integral multiples of each other, wherein the second base frequency is modified to an offset second base frequency that is not an integral multiple of the first base frequency.
Abstract:
Use of adsorption, desorption, particle injection and other means to excite electrons to a region on their band structure diagram near an inflection point were the transient effective mass is elevated proportional to the inverse of curvature. These transient heavy electrons may then cause transmutations similar to transmutations catalyzed by the muons used by Alvarez at UC Berkeley during 1956 in liquid hydrogen. The heavy electrons may also control chemical reactions.
Abstract:
Methods and apparatus for high-deposition sputtering are described. A sputtering source includes an anode and a cathode assembly that is positioned adjacent to the anode. The cathode assembly includes a sputtering target. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A power supply produces an electric field between the anode and the cathode assembly that creates a strongly-Ionized plasma from the weakly-ionized plasma. The strongly-ionized plasma includes a first plurality of ions that impact the sputtering target to generate sufficient thermal energy in the sputtering target to cause a sputtering yield of the sputtering target to be non-linearly related to a temperature of the sputtering target.
Abstract:
Provided is a film forming apparatus in which a thin film can be formed with a good coverage on the inner surface of a hole with high aspect ratio by preventing the negative electric charges from getting concentrated on the substrate edge portion at the time of etching processing. The film forming apparatus is provided with: a vacuum chamber in which a target is disposed; a stage for holding a substrate inside the vacuum chamber; a first electric power for applying predetermined electric power to the target; and a second electric power for applying AC power to the stage. The film forming apparatus performs: film forming processing in which the target is sputtered by applying electric power to the target by the first electric power; and etching processing in which a thin film formed on the substrate is etched by applying AC power to the stage by the second electric power.
Abstract:
A method is for depositing a dielectric material on to a substrate in a chamber by pulsed DC magnetron sputtering with a pulsed DC magnetron device which produces one or more primary magnetic fields. In the method, a sputtering material is sputtered from a target, wherein the target and the substrate are separated by a gap in the range 2.5 to 10 cm and a secondary magnetic field is produced within the chamber which causes a plasma produced by the pulsed DC magnetron device to expand towards one or more walls of the chamber.
Abstract:
The present invention provides a means capable of determining the surface state of the target to execute accurate and quick cleaning of necessary part. The means includes: a magnet unit capable of forming a magnetic field on the surface of a target; a rotary system capable of driving the magnet unit to change the magnetic field pattern; and an ammeter configured to measure target current when the magnetic field is formed by the magnet unit and discharge voltage is applied to a target electrode to which the target is attached. The position of the magnet unit is variously changed by the rotary system, and the target current is measured at each position and compared with a reference value. It is then determined whether cleaning is necessary at each position, so that cleaning can be performed only for necessary part.
Abstract:
Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.
Abstract:
A method for performing reactive sputtering processes while maintaining the sputtering characteristic at: the target as well as the deposition rate constant, or at least in an acceptable range for the industrial production context, independent of the target age.
Abstract:
A magnetron can be inspected with high accuracy. A life of the magnetron is determined on the basis of a comparison between a current parameter, which indicates a current status of the magnetron and is obtained from the one or more measurement values for specifying a current status of the magnetron at a time point when a time period having a predetermined duration or more has elapsed after generation of a high frequency power by the magnetron is started, and a difference between a power of a progressive wave and a set power is equal to or lower than a first predetermined value and a power of a reflection wave is equal to or lower than a second predetermined value, and an initial parameter, which indicates an initial status of the magnetron and corresponds to the current parameter.