Abstract:
An eWLB package for 3D and PoP applications includes a redistribution layer on a support wafer. A semiconductor die is coupled to the redistribution layer, and solder balls are also positioned on the redistribution layer. The die and solder balls are encapsulated in a molding compound layer, which is planarized to expose top portions of the solder balls. A second redistribution layer is formed on the planarized surface of the molding compound layer. A ball grid array can be positioned on the second redistribution layer to couple the semiconductor package to a circuit board, or additional semiconductor dies can be added, each in a respective molding compound layer. The support wafer can act as an interposer, in which case it is processed to form TSVs in electrical contact with the first redistribution layer, and a redistribution layer is formed on the opposite side of the support substrate, as well.
Abstract:
A sensor package is provided having a light sensitive component and a light emitting component attached to a same substrate. Light from the light emitting component is emitted from the package through a first opening and reflected back into the package to the light sensitive component through a second opening in the package. A glass attachment is placed between the light emitting component and the light sensitive component. A portion of the glass is removed and filled with an opaque substance to prevent light travelling between the light emitting component and the light sensitive component in the package.
Abstract:
An integrated circuit die has a dielectric layer positioned over all the contact pads on the integrated circuit die. Openings are provided in the dielectric layer over each of the contact pads of the integrated circuit die in order to permit electrical coupling to be made between the integrated circuit and circuit boards outside of the die. For those contact pads located in the central region of the die, the opening in the dielectric layer is in a central region of the contact pad. For those contact pads located in a peripheral region of the die, spaced adjacent the perimeter die, the opening in the dielectric layer is offset from the center of the contact pad and is positioned closer to the central region of the die than the center of the contact pad is to the central region of the die.
Abstract:
A sensor package is provided having a light sensitive component and a light emitting component attached to a same substrate. Light from the light emitting component is emitted from the package through a first opening and reflected back into the package to the light sensitive component through a second opening in the package. A glass attachment is placed between the light emitting component and the light sensitive component. A portion of the glass is removed and filled with an opaque substance to prevent light travelling between the light emitting component and the light sensitive component in the package.
Abstract:
A photoresist delivery system includes a photoresist pump, a photoresist reservoir coupled to the photoresist pump, and a photoresist container. A control valve is between the photoresist reservoir and the photoresist container and is movable from a closed position to an open position upon engagement of the photoresist container with the photoresist reservoir to replenish photoresist therein.
Abstract:
The thermal energy transfer techniques of the disclosed embodiments utilize passive thermal energy transfer techniques to reduce undesirable side effects of trapped thermal energy at the circuit level. The trapped thermal energy may be transferred through the circuit with thermally conductive structures or elements that may be produced as part of a standard integrated circuit process. The localized and passive removal of thermal energy achieved at the circuit level rather just at the package level is both more effective and more efficient.
Abstract:
A manufacturing process includes forming a reconstituted wafer, including embedding semiconductor dice in a molding compound layer and forming through-wafer vias in the layer. A fan-out redistribution layer is formed on a front side of the wafer, with electrical traces interconnecting the dice, through-wafer vias, and contact pads positioned on the redistribution layer. Solder balls are positioned on the contact pads and a molding compound layer is formed on the redistribution layer, reinforcing the solder balls. A second fan-out redistribution layer is formed on a back side of the wafer, with electrical traces interconnecting back ends of the through-wafer vias and contact pads positioned on a back face of the second redistribution layer. Flip-chips and/or surface-mounted devices are coupled to the contact pads of the second redistribution layer and encapsulated in an underfill layer formed on the back face of the second redistribution layer.
Abstract:
The present disclosure is directed to a camera module that includes at least a semiconducting die, an image-sensing circuit, a lens, a lens aperture, and a coating that adheres to an exterior surface of the camera module. The coating is opaque to light and prevents light from accessing the camera other than through the lens aperture. The opaque coating is applied as a fluid and is cured. In one embodiment, a mask material is selectively applied to exterior surfaces of the semiconducting die, electrical interconnect layers, glass layers, the lens body, or the lens aperture. After applying the opaque coating, the selectively applied mask material is removed. Methods of selectively applying a mask material include applying a conformable and peelably releasable dope-like material, placing an array of joined, selectively shaped rigid masks over an array of assemblies, and applying a conformable mask material that is heat-expandable.
Abstract:
The present disclosure is directed to a device and a method for forming a precision temperature sensor switch with a Wheatstone bridge configuration of four resistors and a comparator. When the temperature sensor detects a temperature above a threshold, the switch will change states. The four resistors in the Wheatstone bridge have the same resistance, with three of the resistors having a low temperature coefficient of resistance and the fourth resistor having a high temperature coefficient of resistance. As the temperature increases, the resistance of the fourth resistor will change. The change in resistance of the fourth resistor will change a voltage across the bridge. The voltage across the bridge is coupled to the comparator and compares the voltage with the threshold temperature, such that when the threshold temperature is exceeded, the comparator switches the output off.
Abstract:
An electronic package that includes a composite material base. In one embodiment the electronic package is an expanded wafer-level package. The composite material base is composed of woven strands and polymer material. In one embodiment the composite material base is composed of woven fiberglass strands and an epoxy material. In various embodiments the package includes an electronic circuitry layer on one or another face of the composite material base. In other embodiments conductive vias connect the circuitry layers, including a redistribution layer. In yet another embodiment an electronic package is mounted on the composite material base and electrically couples to the circuit of the expanded wafer-level package. The package having the composite material base is mechanically stronger and can be made thinner than a package that relies on an encapsulant material for structure, and resists cracking.