Abstract:
A method for making a wire bond package comprising the step of providing a lead frame array comprising a plurality of lead frame units therein, each lead frame unit comprises a first die pad and a second die pad each having a plurality of tie bars connected to the lead frame array, a plurality of reinforced bars interconnecting the first and second die pads; the reinforced bars are removed after molding compound encapsulation.
Abstract:
A semiconductor package and it manufacturing method includes a lead frame having a die pad, and a source lead with substantially a V groove disposed on a top surface. A semiconductor chip disposed on the die pad. A metal plate connected to a top surface electrode of the chip having a bent extension terminated in the V groove in contact with at least one of the V groove sidewalls.
Abstract:
Methods and systems are described for verifying stored data by receiving a first set of metadata associated with a first set of stored data, generating a second set of metadata associated with a second set of stored data which is associated with the first set of stored data, and comparing the first set of metadata and second set of metadata. Alternatively, the storage system can also generate a first set of metadata associated with a first set of stored data, generate a second set of stored data which is a copy of the first set of stored data, generate a second set of metadata associated with the second set of stored data, and compare the first set of metadata and the second set of metadata.
Abstract:
A method is disclosed for attaching an interconnection plate to semiconductor die within leadframe package. A base leadframe is provided with die pad for attaching semiconductor die. An interconnection plate is provided for attachment to the base leadframe and semiconductor die. Add a base registration feature onto base leadframe and a plate registration feature onto interconnection plate with the registration features designed to match each other such that, upon approach of the interconnection plate to base leadframe, the two registration features would engage and guide each other causing concomitant self-aligned attachment of the interconnection plate to base leadframe. Next, the interconnection plate is brought into close approach to base leadframe to engage and lock plate registration feature to base registration feature hence completing attachment of the interconnection plate to semiconductor die and forming a leadframe package.
Abstract:
An approach is provided for a multi-component seismic data processing that separates P-type and S-type seismic waves in an affine coordinate system. A method for separating and composing seismic waves comprises: determining base vectors of the seismic waves; transforming and separating the seismic wave in an affine coordinate system; and obtaining a signal with true amplitudes and eliminating a mode leakage phenomenon. Therefore, the method achieves the wave separation and recovers the amplitudes of separated waves simultaneously, which reduces noises to provide more precisely seismic data and to satisfy the requirement of seismic data analysis and processing.
Abstract:
An engine control system comprises a base air per cylinder (APC) module, a catalyst temperature adjustment module, an ambient temperature adjustment module, and an APC adjustment module. The base APC module determines a base APC to reduce first engine pumping losses during a first deceleration fuel cutoff (DFCO) event relative to second engine pumping losses during a second DFCO event. The catalyst temperature adjustment module determines a catalyst temperature adjustment based on a catalyst temperature during the first DFCO event. The ambient temperature adjustment module determines an ambient temperature adjustment based on an ambient air temperature during the first DFCO event. The APC adjustment module selectively adjusts the base APC based on the catalyst temperature adjustment and the ambient temperature adjustment and controls at least one of the engine airflow actuators based on the adjusted base APC during the first DFCO event.
Abstract:
A combined packaged power semiconductor device includes a flipped top source low-side MOSFET electrically connected to a top surface of a die paddle, a first metal interconnection plate connecting between a bottom drain of a high-side MOSFET or a top source of a flipped high-side MOSFET to a bottom drain of the low-side MOSFET, and a second metal interconnection plate stacked on top of the high-side MOSFET chip. The high-side, low-side MOSFET and the IC controller can be packaged three-dimensionally that reduces the overall size of semiconductor devices and can maximize the chip's size within a package of the same size and improves the performance of the semiconductor devices. The top source of flipped low-side MOSFET is connected to the top surface of the die paddle and thus is grounded through the exposed bottom surface of die paddle, which simplifies the shape of exposed bottom surface of the die paddle and maximizes the area to facilitate heat dissipation.
Abstract:
Embodiments of the invention relate to methods and compositions for the expansion of hematopoietic stem cell (HSC) self renewal. The microRNA-125a is a master control of HSC self-renewal. Increased expression of mir-125a increased HSC self-renewal by 6-30 folds. Increased expression of mir-125a can be used to expand HSC ex vivo and in vivo.
Abstract:
An engine control system includes a fuel cutoff (FCO) module, a fuel control module, and a spark control module. The FCO module, when a FCO event is disabled, determines a feed-forward (FF) number of cylinders to offset a delay period associated with supplying fuel to the cylinders of an engine and selectively maintains a FCO torque request at a predetermined torque. The fuel control module commands fuel be supplied to the FF number of cylinders of the engine when the FCO event is disabled. The spark control module maintains a spark timing of the FF number of cylinders at a fully retarded spark timing based on the FCO torque request.
Abstract:
A dual-leadframe multi-chip package comprises a first leadframe with a first die pad, and a second leadframe with a second die pad; a first chip mounted on the first die pad functioning as a high-side MOSFET and second chip mounted on the second die pad functioning as a low-side MOSFET. The package may further comprises a bypass capacity configured as a third chip mounted on the first die pad or integrated with the first chip. The package may further comprise a three-dimensional connecting plate formed as an integrated structure as the second die pad for electrically connecting a top contact area of the first chip to a bottom contact area of the second chip. A top connecting plate connects a top contact area of the second chip and a top contact area of the third chip to an outer pin of the first leadframe.