Abstract:
Methods for mounting electrical components on a substrate and securely retaining the components are described. The methods include altering solder paste compositions, interposed between component retentive pins and retentive through holes, during a reflow process. Electronic assemblies including circuit boards and electrical components mounted thereto are also described. In one of the electronic assembly embodiments, materials originally associated with a mounted electrical component migrate into solder paste coupling the electrical component to the circuit board.
Abstract:
A capacitor device, which is mountable on a substrate, has an electrically conductive bottom lead frame with a bottom plate mountable substantially parallel to, and in contact with, the substrate and an electrically conductive top lead frame having a top plate spaced apart from the bottom plate and a first transition portion having a first end connected to the top plate and a second end, opposite the first end, electrically connectable to the substrate. Multilayer capacitors are mounted between the top plate and the bottom plate. The capacitors have opposed end terminations electrically connected to the top and bottom plates, such that internal electrode plates are substantially nonparallel to the substrate.
Abstract:
Three printed boards are stored in a case, and a relay connector for connecting the three printed boards is mounted on the second printed board at the middle position. The relay connector is provided with a first terminal storing part, which is long in a vertical direction, and a short second terminal storing part. The relay connector connects a terminal pin of the first printed board at an upper position with a terminal pin of the third printed board at a lower position, via a long first relay terminal stored in the first terminal storing part, while connecting a terminal pin of the first printed board and/or the terminal pin of the third printed board with a conductor of the second printed board, via a short second relay terminal stored in the second terminal storing part.
Abstract:
Apparatuses and associated methods to improve integrated circuit packaging are generally described. More specifically, apparatuses and associated methods to improve solder joint reliability are described. In this regard, according to one example embodiment, one or more strengthening pin(s) are coupled to the periphery of a package substrate, the strengthening pin(s) capable of coupling to a circuit board.
Abstract:
An electronic interconnection system for delivering high-current power and ground voltages using a non-bottom side of a chip package substrate. The system includes a printed wiring board (PWB), a chip package, and a bridge lead. The PWB has at least a first and a second contact pad. The chip package includes a chip and a package substrate. The chip is mounted onto the package substrate and the package substrate has a bottom surface having at least a first contact pad and a second surface having at least a second contact pad. The first contact pad of the PWB and the first contact pad of the package substrate are coupled together. The bridge lead couples the second contact pad of the PWB with the second contact pad of the package substrate. The bridge lead may be selected from styles including flying lead, edge wiping, top wiping, and double wiping.
Abstract:
Apparatuses and associated methods to improve integrated circuit packaging are generally described. More specifically, apparatuses and associated methods to improve solder joint reliability are described. In this regard, according to one example embodiment, one or more strengthening pin(s) are coupled to the periphery of a package substrate, the strengthening pin(s) capable of coupling to a circuit board.
Abstract:
In a semiconductor package including a wiring board having a top surface, a bottom surface and a side face. The bottom surface is divided into a central area, and a peripheral area surrounding the central area. A semiconductor chip is mounted on the top surface of the wiring board so as to be electrically connected to a wiring pattern layer of the wiring board. An array of metal balls is provided as electrode terminals in the central area on the bottom surface of the wiring board. A plurality of additional electrode terminals are provided in the peripheral area on the bottom surface and/or the side face of the wiring board.
Abstract:
An orthogonal backplane connector systems having midplane footprints that provide for continuity of impedance and signal integrity through the midplane and allow for the same connector to be coupled to either side of the midplane. This design creates an orthogonal interconnect without taking up unnecessary PCB real estate. The midplane circuit board may include a first differential signal pair of electrically conductive vias disposed in a first direction, and a second differential signal pair of electrically conductive vias disposed in a second direction that is generally orthogonal to the first direction. The first and second differential signal pair of electrically conductive vias are electrically connected through the midplane circuit board. Each pair may be associated with and be located in between ground vias. A ground via that is large relative to the signal vias may be provided. The second signal vias may comprise a shared signal via, receiving a contact from respective connectors connected to each side of the midplane circuit board. The second signal vias may comprise partial signal vias, extending from one or more sides partially into the midplane circuit board. The signal pairs may be offset from a via array centerline formed by the ground vias to correspond with mating ends of signal contacts of an electrical connector that likewise jog away from a centerline of a respective contact column of the connector.
Abstract:
The present invention relates to an integrated device comprising an electronic circuit chip, a solder contact structure to provide contact to the electronic circuit chip and an elastic contact structure to provide contact to the electronic circuit chip, wherein the solder contact structure and the elastic contact structure are arranged on a contacting surface of the integrated device.
Abstract:
An electronic appliance, such as a computer and the like, comprising a printed circuit board with printed circuits arranged thereon and electromagnetic components electrically connected thereto, as well as a heat dissipating arrangement for dissipating heat generated by the components to the surrounding atmosphere, a special feature being the fact that the heat dissipating arrangement comprises a heat sink with several separate thermal conductors which are thermically connected to the printed circuits, which thermal conductors can be arranged on the printed circuit board in various positions, each position corresponding to a predetermined heat dissipation direction.