Abstract:
A test socket for facilitating testing of a device under test (DUT) includes a holder comprising a mounting structure for attaching the holder to other components of the socket and a floating nest structure in which the DUT can be disposed. The floating nest structure can have a seat cavity sized and shaped to receive and hold the DUT such that at least some of the DUT terminals are in contact with corresponding contacts of a test board while the test socket is attached to the test board. A flexure located laterally between the mounting structure and the floating nest structure and can allow the nest structure to move relative to the mounting structure and thus float.
Abstract:
A probe card apparatus can comprise a tester interface to a test controller, probes for contacting terminals of electronic devices to be tested, and electrical connections there between. The probe card apparatus can comprise a primary sub-assembly, which can include the tester interface. The probe card apparatus can also comprise an interchangeable probe head, which can include the probes. The interchangeable probe head can be attached to and detached from the primary sub-assembly while the primary sub-assembly is secured to or in a housing of a test system. Different probe heads each having probes disposed in different patterns to test different types of electronic devices can thus be interchanged while the primary sub-assembly is secured to or in a housing of the test system.
Abstract:
A method of making a probe (and the resulting probe) comprising providing a metal foil, creating a tip on an edge of the foil, and laser cutting a body of the probe from the foil with one or more tips at an end of the body.
Abstract:
Methods, apparatus, and computer readable media for designing a custom test system are described. Examples of the invention can relate to a method of generating test system software for a semiconductor test system. In some examples, a method can include obtaining a configuration of the semiconductor test system, the configuration including a description of a device under test (DUT) and a description of test hardware; and generating an application programming interface (API) specific to the configuration of the semiconductor test system, the API being generated based on the description of the DUT and the description of the test hardware, the API providing a programming interface between the test system software and the test hardware to facilitate testing of the DUT.
Abstract:
Described herein is a probe card assembly providing signal paths for conveying high frequency signals between bond pads of an integrated circuit (IC) and an IC tester. The frequency response of the probe card assembly is optimized by appropriately distributing, adjusting and impedance matching resistive, capacitive and inductive impedance values along the signal paths so that the interconnect system behaves as an appropriately tuned Butterworth or Chebyshev filter.
Abstract:
An electronics module is assembled by demountably attaching integrated circuits to a module substrate. The module is then tested at a particular operating speed.. If the module fails to operate correctly at the tested speed, the integrated circuit or circuits that caused the failure are removed and replaced with new integrated circuits, and the module is retested. Once it is determined that the module operates correctly at the tested speed, the module may be rated to operate at the tested speed and sold, or the module may be tested at a higher speed.
Abstract:
An initial graph of nodes is created within a routing space, and the number and locations of the nodes in the graph are adjusted. Links are created between nodes of the graph, and traces between specified nodes are created through the linked graph.
Abstract:
Surface-mount, solder-down sockets are described which permit electronic components such as semiconductor packages to be releasably mounted to a circuit board. Generally, the socket includes resilient contact structures extending from a top surface of a support substrate, and solder-ball (or other suitable) contact structures disposed on a bottom surface of the support substrate. Composite interconnection elements are described for use as the resilient contact structures disposed atop the support substrate. In use, the support substrate is soldered down onto the circuit board, the contact structures on the bottom surface of the support substrate contacting corresponding contact areas on the circuit board. In any suitable manner, selected ones of the resilient contact structures atop the support substrate are connected, via the support substrate, to corresponding ones of the contact structures on the bottom surface of the support substrate. For example, the support substrate is suitably a printed circuit board having plated through holes. In an embodiment intended to receive a LGA-type semiconductor package, pressure contact is made between the resilient contact structures and external connection points of the semiconductor package with a contact force which is generally normal to the top surface of the support substrate. In an embodiment intended to receive a BGA-type semiconductor package, pressure contact is made between the resilient contact structures and external connection points of the semiconductor package with a contact force which is generally parallel to the top surface of the support substrate. Variations of these two basic embodiments are described, including limiting wiping motion of the resilient contact structures across a terminal of an electronic component, and moving the resilient contact structures rather than the electronic component to effect pressure connections therebetween.
Abstract:
A probe system for providing signal paths between an integrated circuit (IC) tester and input/output, power and ground pads on the surfaces of ICs to be tested includes a probe board assembly, a flex cable and a set of probes arranged to contact the IC's I/O pads. The probe board assembly includes one or more rigid substrate layers with traces and vias formed on or within the substrate layers providing relatively low bandwidth signal paths linking the tester to probes accessing some of the IC's pads. The flex cable provides relatively high bandwidth signal paths linking the tester to probes accessing others of the IC's pads. A flex strip may alternatively be disposed behind a substrate with probes.
Abstract:
A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.