Abstract:
Embedded die packaging for high voltage, high temperature operation of power semiconductor devices is disclosed, wherein a power semiconductor die is embedded in laminated body comprising a layer stack of a plurality of dielectric layers and electrically conductive layers. For example, the dielectric layers comprise dielectric build-up layers of filled or fiber reinforced dielectric and conductive interconnect comprises copper layers and copper filled vias. A dielectric build-up layer, e.g. filled or glass fiber reinforced epoxy, forms an external surface of the package covering underlying copper interconnect, particularly in regions which experience high electric field during operation, such as between closely spaced source and drain interconnect metal. For example, the power semiconductor device comprises a GaN HEMT rated for operation at ≥100V wherein the package body has a laminated structure configured for high voltage, high temperature operation with improved reliability.
Abstract:
Embedded packaging for high voltage, high temperature operation of power semiconductor devices is disclosed, wherein a semiconductor die is embedded in a dielectric body comprising a dielectric polymer composition characterized by a conductivity transition temperature Tc, a first activation energy EaLow for conduction in a temperature range below Tc, and a second activation energy EaHigh for conduction in a temperature range above Tc. A test methodology is disclosed for selecting a dielectric epoxy composition having values of Tc, EaLow, and EaHigh that provide a conduction value below a required reliability threshold, e.g. ≤5×10−13 S/cm, for a specified operating voltage and temperature. For example, the power semiconductor device comprises a GaN HEMT rated for operation at ≥100V wherein the package body is formed from a laminated dielectric epoxy composition for operation at >150 C, wherein Tc is ≥75 C, EaLow is ≤0.2 eV and EaHigh is ≤1 eV, for improved reliability for high voltage, high temperature operation.
Abstract:
An integrated gate protection device P for a GaN power transistor D1 provides negative ESD spike protection. Protection device P comprises a smaller gate width wg enhancement mode GaN transistor Pm. The source of Pm is connected to its gate, the drain of Pm is connected to the gate input of D1, and the source of Pm is connected to the intrinsic source of D1. When the gate input voltage is taken negative below the threshold voltage for reverse conduction, Pm conducts and quenches negative voltage spikes. When device P comprises a plurality of GaN protection transistors P1 to Pn, connected in series, it turns on when the gate input voltage applied to the drain of P1 goes negative by more than the sum of the threshold voltages of P1 to Pn. The combined gate width of P1 to Pn is selected to limit the gate voltage excursion of D1.
Abstract:
A GaN-on-Si device structure and a method of fabrication are disclosed for improved die yield and device reliability of high current/high voltage lateral GaN transistors. A plurality of conventional GaN device structures comprising GaN epi-layers are fabricated on a silicon substrate (GaN-on-Si die). After processing of on-chip interconnect layers, a trench structure is defined around each die, through the GaN epi-layers and into the silicon substrate. A trench cladding is provided on proximal sidewalls, comprising at least one of a passivation layer and a conductive metal layer. The trench cladding extends over exposed surfaces of the GaN epi-layers, over the interface region with the substrate, and also over the exposed surfaces of the interconnect layers. This structure reduces risk of propagation of dicing damage and defects or cracks in the GaN epi-layers into active device regions. A metal trench cladding acts as a barrier for electro-migration of mobile ions.
Abstract:
Circuit-Under-Pad (CUP) device topologies for high current lateral GaN power transistors comprise first and second levels of on-chip metallization M1 and M2; M1 defines source, drain and gate finger electrodes of a plurality of sections of a multi-section transistor and a gate bus; M2 defines an overlying contact structure comprising a drain pad and source pads extending over active regions of each section. The drain and source pads of M2 are interconnected by conductive micro-vias to respective underlying drain and source finger electrodes of M1. The pad structure and the micro-via interconnections are configured to reduce current density in self-supported widths of source and drain finger electrodes, i.e. to optimize a maximum current density for each section. For reduced gate loop inductance, part of each source pad is routed over the gate bus. Proposed CUP device structures provide for higher current carrying capability and reduced drain-source resistance.
Abstract:
A GaN-on-Si device structure and a method of fabrication are disclosed for improved die yield and device reliability of high current/high voltage lateral GaN transistors. A plurality of conventional GaN device structures comprising GaN epi-layers are fabricated on a silicon substrate (GaN-on-Si die). After processing of on-chip interconnect layers, a trench structure is defined around each die, through the GaN epi-layers and into the silicon substrate. A trench cladding is provided on proximal sidewalls, comprising at least one of a passivation layer and a conductive metal layer. The trench cladding extends over exposed surfaces of the GaN epi-layers, over the interface region with the substrate, and also over the exposed surfaces of the interconnect layers. This structure reduces risk of propagation of dicing damage and defects or cracks in the GaN epi-layers into active device regions. A metal trench cladding acts as a barrier for electro-migration of mobile ions.
Abstract:
Packaging solutions for large area, GaN die comprising one or more lateral GaN power transistor devices and systems are disclosed. Packaging assemblies comprise an interposer sub-assembly comprising the lateral GaN die and a leadframe. The GaN die is electrically connected to the leadframe using bump or post interconnections, silver sintering, or other low inductance interconnections. Then, attachment of the GaN die to the substrate and the electrical connections of the leadframe to contacts on the substrate are made in a single process step. The sub-assembly may be mounted in a standard power module, or alternatively on a substrate, such as a printed circuit board. For high current applications, the sub-assembly also comprises a ceramic substrate for heat dissipation. This packaging scheme provides interconnections with lower inductance and higher current capacity, simplifies fabrication, and enables improved thermal matching of components, compared with conventional wirebonded power modules.
Abstract:
Devices and systems comprising high current/high voltage GaN semiconductor devices are disclosed. A GaN die, comprising a lateral GaN transistor, is sandwiched between an overlying header and an underlying composite thermal dielectric layer. Fabrication comprises providing a conventional GaN device structure fabricated on a low cost silicon substrate (GaN-on-Si die), mechanically and electrically attaching source, drain and gate contact pads of the GaN-on-Si die to corresponding contact areas of conductive tracks of the header, then entirely removing the silicon substrate. The exposed substrate-surface of the epi-layer stack is coated with the composite dielectric thermal layer. Preferably, the header comprises a ceramic dielectric support layer having a CTE matched to the GaN epi-layer stack. The thermal dielectric layer comprises a high dielectric strength thermoplastic polymer and a dielectric filler having a high thermal conductivity. This structure offers improved electrical breakdown resistance and effective thermal dissipation compared to conventional GaN-on-Si device structures.
Abstract:
A fault tolerant design for large area nitride semiconductor devices is provided, which facilitates testing and isolation of defective areas. A transistor comprises an array of a plurality of islands, each island comprising an active region, source and drain electrodes, and a gate electrode. Electrodes of each island are electrically isolated from electrodes of neighbouring islands in at least one direction of the array. Source, drain and gate contact pads are provided to enable electrical testing of each island. After electrical testing of islands to identify defective islands, overlying electrical connections are formed to interconnect source electrodes in parallel, drain electrodes in parallel, and to interconnect gate electrodes to form a common gate electrode of large gate width Wg. Interconnections are provided selectively to good islands, while electrically isolating defective islands. This approach makes it economically feasible to fabricate large area GaN devices, including hybrid devices.
Abstract:
Devices and systems comprising driver circuits are disclosed for MOSFET driven, normally-on gallium nitride (GaN) power transistors. Preferably, a low power, high speed CMOS driver circuit with an integrated low voltage, lateral MOSFET driver is series coupled, in a hybrid cascode arrangement to a high voltage GaN HEMT, for improved control of noise and voltage transients. Co-packaging of a GaN transistor die and a CMOS driver die using island topology contacts, through substrate vias, and a flip-chip, stacked configuration provides interconnections with low inductance and resistance, and provides effective thermal management. Co-packaging of a CMOS input interface circuit with the CMOS driver and GaN transistor allows for a compact, integrated CMOS driver with enhanced functionality including shut-down and start-up conditioning for safer operation, particularly for high voltage and high current switching. Preferred embodiments also provide isolated, self-powered, high speed driver devices, with reduced input losses.